While antioxidants are widely known as natural components of healthy food and drinks or as additives to commercial polymer materials to prevent their degradation, recent years have seen increasing interest in enhancing the antioxidant functionality of newly developed polymer materials and coatings. This paper provides a critical overview and comparative analysis of multiple ways of integrating antioxidants within diverse polymer materials, including bulk films, electrospun fibers, and self-assembled coatings. Polyphenolic antioxidant moieties with varied molecular architecture are in the focus of this Review, because of their abundance, nontoxic nature, and potent antioxidant activity. Polymer materials with integrated polyphenolic functionality offer opportunities and challenges that span from the fundamentals to their applications. In addition to the traditional blending of antioxidants with polymer materials, developments in surface grafting and assembly via noncovalent interaction for controlling localization versus migration of antioxidant molecules are discussed. The versatile chemistry of polyphenolic antioxidants offers numerous possibilities for programmed inclusion of these molecules in polymer materials using not only van der Waals interactions or covalent tethering to polymers, but also via their hydrogen-bonding assembly with neutral molecules. An understanding and rational use of interactions of polyphenol moieties with surrounding molecules can enable precise control of concentration and retention versus delivery rate of antioxidants in polymer materials that are critical in food packaging, biomedical, and environmental applications.
Traumatic brain injury (TBI) results in the generation of reactive oxygen species (ROS) and lipid peroxidation product (LPOx), including acrolein and 4-hydroxynonenal (4HNE). The presence of these biochemical derangements results in neurodegeneration during the secondary phase of the injury. The ability to rapidly neutralize multiple species could significantly improve outcomes for TBI patients. However, the difficulty in creating therapies that target multiple biochemical derangements simultaneously has greatly limited therapeutic efficacy. Therefore, our goal was to design a material that could rapidly bind and neutralize both ROS and LPOx following TBI. To do this, a series of thiol-functionalized biocompatible copolymers based on lipoic acid methacrylate and polyethylene glycol monomethyl ether methacrylate (FW ∼ 950 Da) (O950) were prepared. A polymerizable gadolinium-DOTA methacrylate monomer (Gd-MA) was also synthesized starting from cyclen to facilitate direct magnetic resonance imaging and in vivo tracking of accumulation. These neuroprotective copolymers (NPCs) were shown to rapidly and effectively neutralize both ROS and LPOx. Horseradish peroxidase absorbance assays showed that the NPCs efficiently neutralized H2O2, while R-phycoerythrin protection assays demonstrated their ability to protect the fluorescent protein from oxidative damage. 1H NMR studies indicated that the thiol-functional NPCs rapidly form covalent bonds with acrolein, efficiently removing it from solution. In vitro cell studies with SH-SY5Y-differentiated neurons showed that NPCs provide unique protection against toxic concentrations of both H2O2 and acrolein. NPCs rapidly accumulate and are retained in the injured brain in controlled cortical impact mice and reduce post-traumatic oxidative stress. Therefore, these materials show promise for improved target engagement of multiple biochemical derangements in hopes of improving TBI therapeutic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.