Mouse syngeneic tumor models are widely used tools to demonstrate activity of novel anti-cancer immunotherapies. Despite their widespread use, a comprehensive view of their tumor-immune compositions and their relevance to human tumors has only begun to emerge. We propose each model possesses a unique tumor-immune infiltrate profile that can be probed with immunotherapies to inform on anti-tumor mechanisms and treatment strategies in human tumors with similar profiles. In support of this endeavor, we characterized the tumor microenvironment of four commonly used models and demonstrate they encompass a range of immunogenicities, from highly immune infiltrated RENCA tumors to poorly infiltrated B16F10 tumors. Tumor cell lines for each model exhibit different intrinsic factors in vitro that likely influence immune infiltration upon subcutaneous implantation. Similarly, solid tumors in vivo for each model are unique, each enriched in distinct features ranging from pathogen response elements to antigen presentation machinery. As RENCA tumors progress in size, all major T cell populations diminish while myeloid-derived suppressor cells become more enriched, possibly driving immune suppression and tumor progression. In CT26 tumors, CD8 T cells paradoxically increase in density yet are restrained as tumor volume increases. Finally, immunotherapy treatment across these different tumor-immune landscapes segregate into responders and non-responders based on features partially dependent on pre-existing immune infiltrates. Overall, these studies provide an important resource to enhance our translation of syngeneic models to human tumors. Future mechanistic studies paired with this resource will help identify responsive patient populations and improve strategies where immunotherapies are predicted to be ineffective.
Using adult male C57BL/6 mice that express a yellow fluorescent protein transgene in their motor neurons, we induced experimental autoimmune encephalomyelitis (EAE) by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG peptide) in complete Freund's adjuvant (CFA). Control mice of the same transgenic strain received CFA without MOG peptide. Early in the course of their illness, the EAE mice showed lumbosacral spinal cord inflammation, demyelination and axonal fragmentation. By 14 weeks post-MOG peptide, these abnormalities were much less prominent, but the mice remained weak and, as in patients with progressive multiple sclerosis, spinal cord atrophy had developed. There was no significant loss of lumbar spinal cord motor neurons in the MOG peptide-EAE mice. However, early in the course of the illness, motor neuron dendrites were disrupted and motor neuron expression of hypophosphorylated neurofilament-H (hypoP-NF-H) immunoreactivity was diminished. By 14 weeks post-MOG peptide, hypoP-NF-H expression had returned to normal, but motor neuron dendritic abnormalities persisted and motor neuron perikaryal atrophy had appeared. We hypothesize that these motor neuron abnormalities contribute to weakness in this form of EAE and speculate that similar motor neuron abnormalities are present in patients with progressive multiple sclerosis.
A prominent feature of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is the accumulation of enlarged, multipolar glial fibrillary acidic protein (GFAP) and brain lipid binding protein (BLBP) immunoreactive astroglia within and at the margins of the inflammatory demyelinative lesions. Whether this astrogliosis is due to both astroglial hyperplasia and hypertrophy or solely to astroglial hypertrophy is controversial. We now report that coincident with the first appearance of inflammation and clinical deficits in mice with myelin oligodendrocyte glycoprotein peptide (MOG peptide)-induced EAE, the radially oriented, bipolar, GFAP, and BLBP positive cells (adult radial glia) present in normal spinal cord white matter undergo mitosis and phenotypic transformation to hypertrophic astroglia. To facilitate visualization of relationships between these hypertrophic astroglia and dying and regenerating oligodendroglia, we used mice that express enhanced green fluorescent protein (EGFP) in cells of the oligodendroglial lineage. During the first week after onset of illness, markedly swollen EGFP+ cells without processes were seen within lesions, whereas EGFP+ cells that expressed immunoreactive cleaved caspase-3 were uncommon. These observations support the hypothesis that necrosis contributes to oligodendroglial loss early in the course of EAE. Later in the illness, EGFP+ cells accumulated amongst hypertrophic astroglia at the margins of the lesions, while the lesions themselves remained depleted of oligodendroglia, suggesting that migration of oligodendroglial lineage cells into the lesions was retarded by the intense perilesional gliosis.
Although spontaneous remyelination occurs in multiple sclerosis (MS), the extent of myelin repair is often inadequate to restore normal function. Oligodendrocyte precursors remaining in nonremyelinating MS plaques may be restricted by an inhibitory signal. Bone morphogenetic proteins (BMPs) have been implicated as repressors of oligodendrocyte development and inducers of astrogliogenesis. We hypothesized that BMPs are up-regulated in MS lesions and play a role in demyelination and astrogliosis. We examined expression of BMPs in an animal model of MS, chronic experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide in C57BL/6 mice. By 14 days postimmunization, compared to those of control mice, the lumbar spinal cords of MOG-peptide EAE mice demonstrated prominent astrogliosis, infiltration of inflammatory cells, and disrupted expression of myelin proteins. Quantitative RT-PCR showed that expression of BMP4, BMP6, and BMP7 mRNA increased 2- to 4-fold in the lumbar spinal cords of animals with symptomatic EAE versus in vehicle-treated and untreated controls on days 14, 21, and 42 postimmunization. BMP2 mRNA expression was not altered. BMP4 mRNA was much more abundant in the spinal cords of all animals than was mRNA encoding BMP2, BMP6, and BMP7. Immunoblot analysis confirmed the increased expression of BMP4 in the EAE animals. Immunohistochemistry revealed increased BMP4 immunoreactivity in areas of inflammation in MOG-peptide EAE animals. BMP4 labeling was mostly limited to macrophages but was sometimes associated with astrocytes and oligodendrocytes. These results indicate that members of the BMP family are differentially expressed in adult spinal cord and are up-regulated during EAE. (c) 2007 Wiley-Liss, Inc.
C-reactive protein (CRP) is a risk factor for cardiovascular events and functions to amplify vascular inflammation through promoting endothelial dysfunction. Lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 (LOX-1) is the primary endothelial receptor for oxLDL, and both its expression and function are associated with vascular inflammation. As a scavenger receptor, LOX-1 is capable of binding to a variety of structurally unrelated ligands. Evidence is provided that demonstrates that CRP can act as a novel ligand for LOX-1. The direct interaction between these two proteins was demonstrated with purified protein in both ELISA and AlphaScreen assays. This interaction could be disrupted with known LOX-1 ligands, such as oxLDL and carrageenan. Moreover, the CRP interaction with cell surface-expressed LOX-1 was confirmed in cell-based immunofluorescent-binding studies. Mutagenesis studies demonstrated that the arginine residues forming the basic spine structure on the LOX-1 ligand-binding interface were dispensable for CRP binding, suggesting a novel ligand-binding mechanism for LOX-1, distinct from that used for oxLDL binding. The treatment of human endothelial cells with CRP led to the activation of proinflammatory genes including IL-8, ICAM-1, and VCAM-1. The inductions of these genes by CRP were LOX-1 dependent, as demonstrated by their attenuation in cells transfected with LOX-1 small-interfering RNA. Our study identifies and characterizes the direct interaction between LOX-1 and CRP and suggests that this interaction may mediate CRP-induced endothelial dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.