BackgroundIn the US, noroviruses are estimated to cause 21 million cases annually with economic losses reaching $2 billion. Outbreak investigations frequently implicate vomiting as a major transmission risk. However, little is known about the characteristics of vomiting as a symptom or the amount of virus present in emesis.Methodology and Principal FindingsEmesis samples and symptomology data were obtained from previous norovirus human challenge studies with GI.1 Norwalk virus, GII.2 Snow Mountain virus, and a pilot study with GII.1 Hawaii virus. Viral titers in emesis were determined using strain-specific quantitative RT-PCR. In all four studies, vomiting was common with 40–100% of infected subjects vomiting at least once. However, only 45% of subjects with vomiting also had diarrhea. Most of the emesis samples had detectable virus and the mean viral titers were 8.0 x 105 and 3.9 x 104 genomic equivalent copies (GEC)/ml for GI and GII viruses, respectively (p = 0.02). Sample pH was correlated with GII.2 Snow Mountain virus detection.Conclusions and SignificanceHalf of all subjects with symptomatic infection experienced vomiting and the average subject shed 1.7 x 108 GEC in emesis. Unlike shedding through stool, vomiting is more likely to result in significant environmental contamination, leading to transmission through fomites and airborne droplets. This quantitative data will be critical for risk assessment studies to further understand norovirus transmission and develop effective control measures. The correlation between sample pH and virus detection is consistent with a single site of virus replication in the small intestine and stomach contents becoming contaminated by intestinal reflux. Additionally, the frequency of vomiting without concurrent diarrhea suggests that epidemiology studies that enroll subjects based on the presence of diarrhea may be significantly underestimating the true burden of norovirus disease.
Naegleria fowleri is a thermophilic free-living ameba found in freshwater environments worldwide. It is the cause of a rare but potentially fatal disease in humans known as primary amebic meningoencephalitis. Established N. fowleri detection methods rely on conventional culture techniques and morphological examination followed by molecular testing. Multiple alternative real-time PCR assays have been published for rapid detection of Naegleria spp. and N. fowleri. Four such assays were evaluated for the detection of N. fowleri from surface water and sediment. The assays were compared for thermodynamic stability, analytical sensitivity and specificity, detection limits, humic acid inhibition effects, and performance with seeded environmental matrices. Twenty-one ameba isolates were included in the DNA panel used for analytical sensitivity and specificity analyses. N. fowleri genotypes I and III were used for method performance testing. Two of the real-time PCR assays were determined to yield similar performance data for specificity and sensitivity for detecting N. fowleri in environmental matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.