A unique, interdisciplinary collaboration between chemistry and classics has led to the development of an experiment for nonscience majors. This instrumental analysis experiment was designed for use in an archaeology course to quantify the amount of lead in ancient bronze coins. The coins were corroded beyond visual identification, so provenance could be determined only through chemical analysis. Students digested coin subsamples in acid, prepared and diluted the resulting solutions, then utilized flame atomic absorption spectroscopy for the measurements. External calibration with acid-matched lead standards was used. A certified reference material was analyzed with the coins for method validation. Results were compared to published data to obtain a list of possible coin identities.
Pathogenetic bacteria are becoming more resistant to current antibiotics with increased exposure. A simple infection that could be easily eliminated previously becomes more difficult to get rid of with the high resistance of MRSA, anthrax, and others. Creating a new class of antibiotics will be critical for our future ability to survive infections. The long term goal of the Hoffmann lab is to utilize structure-based drug design to design a new class of antibiotics. Our target is a unique family of proteins in bacteria called NIS Synthetases, involved in siderophore biosythesis; our model enzyme is Desferrioxamine D (DesD) from Streptomyces coelicolor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.