Enantioselective desymmetrization by direct monofunctionalization of prochiral diols is a powerful strategy to prepare valuable synthetic intermediates in high optical purity. Boron acids can activate diols toward nucleophilic additions; however, the design of stable chiral catalysts remains a challenge and highlights the need to identify new chemotypes for this purpose. Herein, the discovery and optimization of a bench-stable chiral 9-hydroxy-9,10-boroxarophenanthrene catalyst is described and applied in the highly enantioselective desymmetrization of 2-aryl-1,3-diols using benzylic electrophiles under operationally simple, ambient conditions. Nucleophilic activation and discrimination of the enantiotopic hydroxy groups on the diol substrate occurs via a defined chairlike six-membered anionic complex with the hemiboronic heterocycle. The optimal binaphthyl-based catalyst 1g features a large aryloxytrityl group to effectively shield one of the two prochiral hydroxy groups on the diol complex, whereas a strategically placed “methyl blocker” on the boroxarophenanthrene unit mitigates the deleterious effect of a competing conformation of the complexed diol that compromised the overall efficiency of the desymmetrization process. This methodology affords monoalkylated products in enantiomeric ratios equal or over 95:5 for a wide range of 1,3-propanediols with various 2-aryl/heteroaryl groups.
Although heterocyclic hemiboronic acids are represented in several recently approved drugs, many questions remain unanswered regarding the physical properties and reactivity of these boranol (BOH)-containing compounds in aqueous media. Over the past 60 years, studies on the acidic and aromatic character of 10-hydroxy-10,9-boroxarophenanthrene and its boraza analog have been conflicting. In contradiction with the Lewis acidic behavior of arylboronic acids in aqueous conditions, it has been proposed that the central boroheterocyclic ring of these borophenanthroids confers sufficient aromatic character to compel the boranol unit to behave as a Brønsted acid and favor the boron oxy conjugate base, thereby avoiding the disruption of cyclic resonance that would otherwise occur with a tetravalent boronate anion. These questions are addressed with a combination of physical and spectroscopic characterizations, X-ray crystallographic analysis, and computational studies. Although both oxa and aza derivatives are conclusively shown to behave as Lewis acids in aqueous solutions, according to pK a measurements and MO and NICS calculations, only the boraza derivatives possess an appreciable aromatic character within the boroheterocyclic ring. For the first time, the possibility of dynamic chemical exchange via a reversible hydrolysis of the endocyclic B–heteroatom bond was examined using VT and EXSY NMR with suitable probe compounds. Whereas the boraza analog is static at neutral pH, its oxa analog undergoes a rapid hydrolytic ring opening–closing equilibrium with the transient boronic acid. Altogether, this study will guide the methodical application of these heterocycles as reaction catalysts, in bioconjugation, and as new-drug chemotypes and bioisosteres of pharmaceutically important classes of heterocycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.