Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5.
The World Health Organization recently defined hypertension and type 2 diabetes (T2D) as modifiable comorbidities leading to dementia and Alzheimer’s disease. In the United States (US), hypertension and T2D are health disparities, with higher prevalence seen for Black and Hispanic minority groups compared to the majority White population. We hypothesized that elevated prevalence of hypertension and T2D risk factors in Black and Hispanic groups may be associated with dementia disparities. We interrogated this hypothesis using a cross-sectional analysis of participant data from the All of Us (AoU) Research Program, a large observational cohort study of US residents. The specific objectives of our study were: (1) to compare the prevalence of dementia, hypertension, and T2D in the AoU cohort to previously reported prevalence values for the US population, (2) to investigate the association of hypertension, T2D, and race/ethnicity with dementia, and (3) to investigate whether race/ethnicity modify the association of hypertension and T2D with dementia. AoU participants were recruited from 2018 to 2019 as part of the initial project cohort (R2019Q4R3). Participants aged 40–80 with electronic health records and demographic data (age, sex, race, and ethnicity) were included for analysis, yielding a final cohort of 125,637 individuals. AoU participants show similar prevalence of hypertension (32.1%) and T2D (13.9%) compared to the US population (32.0% and 10.5%, respectively); however, the prevalence of dementia for AoU participants (0.44%) is an order of magnitude lower than seen for the US population (5%). AoU participants with dementia show a higher prevalence of hypertension (81.6% vs. 31.9%) and T2D (45.9% vs. 11.4%) compared to non-dementia participants. Dominance analysis of a multivariable logistic regression model with dementia as the outcome shows that hypertension, age, and T2D have the strongest associations with dementia. Hispanic was the only race/ethnicity group that showed a significant association with dementia, and the association of sex with dementia was non-significant. The association of T2D with dementia is likely explained by concurrent hypertension, since > 90% of participants with T2D also had hypertension. Black race and Hispanic ethnicity interact with hypertension, but not T2D, to increase the odds of dementia. This study underscores the utility of the AoU participant cohort to study disease prevalence and risk factors. We do notice a lower participation of aged minorities and participants with dementia, revealing an opportunity for targeted engagement. Our results indicate that targeting hypertension should be a priority for risk factor modifications to reduce dementia incidence.
STAT5A (signal transducer and activator of transcription 5A) is a transcription factor that plays a role in adipocyte development and function. In this study, we report DBC1 (deleted in breast cancer 1; also known as CCAR2) as a novel STAT5A-interacting protein. DBC1 has been primarily studied in tumor cells, but there is evidence that loss of this protein may promote metabolic health in mice. Currently, the functions of DBC1 in mature adipocytes are largely unknown. Using immunoprecipitation and immunoblotting techniques, we confirmed that there is an association between endogenous STAT5A and DBC1 proteins under physiological conditions in the adipocyte nucleus that is not dependent upon STAT5A tyrosine phosphorylation. We used siRNA to knockdown DBC1 in 3T3-L1 adipocytes to determine the impact on STAT5A activity, adipocyte gene expression, and TNFα (tumor necrosis factor α)-regulated lipolysis. The loss of DBC1 did not affect the expression of several STAT5A target genes including ,, ,, and However, we did observe decreased levels of TNFα-induced glycerol and free fatty acids released from adipocytes with reduced DBC1 expression. In addition, DBC1-knockdown adipocytes had increased expression. In summary, DBC1 can associate with STAT5A in adipocyte nucleus, but it does not appear to impact regulation of STAT5A target genes. Loss of adipocyte DBC1 modestly increases gene expression and reduces TNFα-induced lipolysis. These observations are consistent with observations that show loss of DBC1 promotes metabolic health in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.