Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl À /H þ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and-genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Impaired activity of galactose-1-phosphate uridyltransferase (GALT) causes galactosemia, an autosomal recessive disorder of galactose metabolism. Early initiation of a galactose-restricted diet can prevent or resolve neonatal complications. Despite therapy, patients often experience long-term complications including speech impairment, learning disabilities, and premature ovarian insufficiency in females. This study evaluates clinical outcomes in 34 galactosemia patients with markedly reduced GALT activity and compares outcomes between patients with different levels of mean galactose-1-phosphate in red blood cells (GAL1P) using logistic regression: group 1 (n = 13) GAL1P ≤1.7 mg/dL vs. group 2 (n = 21) GAL1P ≥ 2 mg/dL. Acute symptoms at birth were comparable between groups (p = 0.30) with approximately 50% of patients presenting with jaundice, liver failure, and failure-to-thrive. However, group 2 patients had significantly higher prevalence of negative long-term outcomes compared to group 1 patients (p = 0.01). Only one of 11 patients >3 yo in group 1 developed neurological and severe behavioral problems of unclear etiology. In contrast, 17 of 20 patients >3 yo in group 2 presented with one or more long-term complications associated with galactosemia. The majority of females ≥15 yo in this group also had impaired ovarian function with markedly reduced levels of anti-Müllerian hormone. These findings suggest that galactosemia patients with higher GAL1P levels are more likely to have negative long-term outcome. Therefore, evaluation of GAL1P levels on a galactose-restricted diet might be helpful in providing a prognosis for galactosemia patients with rare or novel genotypes whose clinical presentations are not well known.
In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogendependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.
The NONO gene encodes a nuclear protein involved in RNA metabolism. Hemizygous loss-offunction NONO variants have been associated with syndromic intellectual disability and with left ventricular noncompaction (LVNC). A two-year-old boy presented to the University of Utah's Penelope Undiagnosed Disease Program with developmental delay, nonfamilial features, relative macrocephaly, and dilated cardiomyopathy with LVNC and Ebstein anomaly. Brain MRI showed a thick corpus callosum, mild Chiari I malformation, and a flattened pituitary. Exome sequencing identified a novel intronic deletion (c.154+5_154+6delGT) in the NONO gene. Splicing studies demonstrated intron 4 read-through and the use of an alternative donor causing the frameshift p.Asn52Serfs*6.Family segregation analysis showed that the variant occurred de novo in the boy's unaffected mother. MRI and endocrine findings suggest that hypopituitarism may contribute to growth failure, abnormal thyroid hormone levels, cryptorchidism, or delayed puberty in patients with NONOassociated disease. Also, including this case LVNC has been observed in five out of eight patients, and this report also confirms an association between loss of NONO and Ebstein anomaly. In some cases, unrelated individuals share the same pathogenic NONO variants but do not all have clinically significant LVNC, suggesting that additional modifiers may contribute to cardiac phenotypes. K E Y W O R D S Ebstein anomaly, left ventricular noncompaction, NONO, splicing variant, syndromic intellectual disability 1 | INTRODUCTION The nonoctamer-containing, POU-domain DNA-binding protein (NONO) is a highly conserved, member of the Drosophila behavior/human splicing (DBHS) protein family thought to be involved in various aspects of RNA metabolism (Shav-Tal and Zipori, 2002). Mice lacking NONO have small cerebellums, spatial memory impairment, and changes at inhibitory synapses (Mircsof et al., 2015). Immunohistochemistry indicates that NONO is broadly expressed in mouse tissues, including in neurons and granule cells of the cortex and hippocampus (Mircsof et al., 2015) as well as in the heart (Scott et al., 2017). Hemizygous loss-of-function variants in the Xq13.1-located NONO gene in patients were initially associated with an intellectual disability syndrome (MIM: 300967), with findings including macrocephaly, nonfamilial features, and thickened corpus callosum (Mircsof et al., 2015). Subsequently, four additional patients were described with these features and with left ventricular noncompaction (LVNC) cardiomyopathy (Reinstein et al., 2016; Scott et al., 2017). To date, five pathogenic NONO alterations have been reported, two of which were observed twice in unrelated patients.Notably, identical NONO variants were variably associated with LVNC. Here we report a patient with shared as well as additional features that confirm and expand the physical, functional, and cardiovascular phenotypes associated with NONO loss. | CLINICAL REPORTThis two-year-old boy at the time of testing was the first-born child of ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.