Chromium (Cr) stable isotopes have emerged as a powerful tool for tracking environmental redox transformations. This is because Cr isotopes are fractionated during redox reactions between Cr(III) and Cr(VI). In order to fully exploit the information recorded within Cr isotope compositions, we must be able to track changes in Cr speciation throughout the environment and, in particular, the changes in speciation between input to the ocean and eventual deposition in sediments. We must also be able to access the isotope compositions of each Cr species, rather than only total dissolved Cr. We have thus developed a magnesium hydroxide coprecipitation method that meets these objectives. This method achieves complete recovery and has a typical precision on concentration measurements of ±8% (1σ). It was tested using seawater collected from Saanich Inlet, a persistently anoxic fjord on the Pacific coast of Canada. Chromium speciation profiles and proof‐of‐concept isotope ratio measurements on selected samples indicate that isotopically lighter Cr(III) can be isolated from coexisting isotopically heavier Cr(VI), effectively resolving species‐specific Cr isotope compositions. While the oxygenated surface waters of Saanich Inlet follow the generally observed correlation between seawater Cr concentration and its isotopic composition, seawater from anoxic depths diverges from this array, indicating that different processes are responsible for setting the isotope composition of these deeper waters. Broader application of Mg(OH)2 coprecipitation has strong potential to yield new insights into the fractionation of Cr isotopes in the oceans and the pathways that ultimately set the Cr isotopic composition of marine sediments and sedimentary archives.
Universities are recognizing the need to prepare graduates to think conceptually and have the ability to take on complex, real-world problems. Strategies to assess conceptual knowledge are limited and often require more time and effort to complete than is accessible for most undergraduate courses. Card sorting is a very broad technique for understanding how people group concepts, but in higher education has typically been used to show a student’s development towards expert-like thinking in a discipline as a whole. However, it typically does not give much insight into how we should change our teaching. In this paper, using the novel setting of two terms of a first-year, earth and ocean science lab that uses problem-based learning (PBL), we show how one can generate a card sort that is built using course learning goals and then use the analysis to make actionable improvements to course instruction. Using a card sort designed so that the expert sort corresponds to learning goals supported by the lab activities, we found that in both offerings of the course students generally moved towards expert-like sorting with a reduction in novice-like sorting. A striking feature stood out in both terms of the course, with one question scoring significantly lower than any other expert pairings, despite a change in the wording of that question between terms. This suggests that our course materials do not promote this specific conceptual connection that we had expected and gives us a clear place to look for issues in our course material. In a broader context, our results suggest that tailoring card sort questions to material at a course level, rather than at the discipline level, can provide a manageable, routine assessment of conceptual knowledge in students, while also providing feedback on the quality of course materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.