A n episode of unusual disease resulting in deaths in different species at a wildlife rehabilitation center in the United Kingdom during late 2020 led to the retrospective detection of infl uenza A virus subtype H5N8 of avian origin in 5 mute swans, a fox, and 3 seals. The wildlife rehabilitation center admits >6,000 animals each year. New arrivals are initially housed in a quarantine facility upon admission. Four juvenile common seals (Phoca vitulina), 1 juvenile gray seal (Halichoerus grypus), and 1 juvenile red fox (Vulpes vulpes) died or were euthanized over a 2-day period. The fox died suddenly after a short period of nonspecifi c malaise and inappetence. The seals exhibited sudden-onset neurologic signs, including seizures before death or euthanasia (Figure 1). This mortality event occurred ≈1 week after the deaths or euthanasia of 5 mute swans (Cygnus olor) held in isolation at the center because of acute-onset malaise and terminal seizures. The 5 swans were submitted for examination and testing under the Avian Infl uenza Wild Bird Surveillance Scheme (undertaken by the United Kingdom's Animal and Plant Health Agency) (1), and they tested positive for highly pathogenic avian infl uenza A(H5N8) virus.The unusual spatiotemporal cluster of unexplained death and neurologic disease in multiple avian and nonavian species warranted further investigation. Infl uenza of avian origin was not suspected in the fox and seals, and none of the other captive birds at the center showed any clinical signs of disease. The linkage between the mortality event in the swans and that observed in the fox and seals was not
Since 2020, the UK and Europe, have experienced annual epizootics of high pathogenicity avian influenza virus (HPAIV). The first during autumn/winter 2020/21 involved the detected with six H5Nx subtypes although H5N8 HPAIV dominated in the UK. Whilst genetic assessment of the H5N8 HPAIVs within the UK demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes. Following a small number of summer detections of H5N1 in wild birds over the summer of 2021, autumn/winter 2021/22 saw another European H5 HPAIV epizootic, that has dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggests that the H5N1 circulating in Europe during late 2020, continued to circulate in wild birds throughout 2021, with minimal adaptation, but has then gone on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the UK, over the last two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk and whether incidents of lateral spread can be defined over independent incursion of infection from wild birds. Key supporting data for mitigation activities.
This focus article has been prepared by Marco Falchieri, Scott M. Reid, Craig S. Ross, Joe James, Alexander M. P. Byrne, Madalina Zamfir, Ian H. Brown and Ashley C. Banyard of the APHA; Glen Tyler and Emma Philip of NatureScot; and Will Miles of Scottish Oceans Institute, School of Biology, University of St Andrews.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.