During September–December 2018, 25 live ticks were collected on-post at Fort Leavenworth, Kansas, in a home with a history of bat occupancy. Nine ticks were sent to the Army Public Health Center Tick-Borne Disease Laboratory and were identified as Carios kelleyi (Cooley and Kohls, 1941), a species that seldom bites humans but that may search for other sources of blood meals, including humans, when bats are removed from human dwellings. The ticks were tested for numerous agents of human disease. Rickettsia lusitaniae was identified by multilocus sequence typing to be present in two ticks, marking the first detection of this Rickettsia agent in the United States and in this species of tick. Two other Rickettsia spp. were also detected, including an endosymbiont previously associated with C. kelleyi and a possible novel Rickettsia species. The potential roles of C. kelleyi and bats in peridomestic Rickettsia transmission cycles warrant further investigation.
The New World species attributed to the genus Malaxa Melichar (Hemiptera: Fulgoroidea: Delphacidae) are reviewed with special reference to the type species Malaxa acutipennis from the Philippines. We provide an amended diagnosis for Malaxa acutipennis contrasted with the genus delineation presented for Chinese Malaxa, most recently by Hou et al. (2013). We find Malaxa to be an Old World genus and segregate New World species into two new genera, Lamaxa and Xalama, diagnosed most readily by proportions of the antennae and features of the terminalia. Both Lamaxa and Xalama are uncommonly encountered. Lamaxa is distributed widely through the Neotropics, whereas Xalama is heretofore known only from Bolivia and Peru.
Public health messaging in the eastern United States has historically underemphasized the risks posed by lone star ticks ( Amblyomma americanum ), focusing instead on blacklegged ticks ( Ixodes scapularis ). This gap persists despite mounting evidence that lone star ticks also play an important role in disease ecology as confirmed vectors for a wide variety of tick-borne pathogens. These pathogens include several distinct bacterial agents that cause ehrlichiosis and tularensis in humans and dogs, a protozoal agent that causes cytauxzoonosis in cats, and emerging viruses such as Heartland, Bourbon, and Tacaribe. Lone star ticks are additionally linked to Rocky Mountain spotted fever, southern tick-associated rash illness, and alpha-gal syndrome, a condition marked by immune reactions to ingestion of mammalian meat. Moreover, their distribution in North America is expanding due to changing climatic factors and land use patterns. Lone star ticks are the most commonly encountered tick in Delaware, especially in Sussex and Kent Counties, and make up the vast majority of ticks collected in the first two years of the state’s tick surveillance program. Given the magnitude of lone star ticks’ medical and veterinary import, it is vital for healthcare professionals and health educators to devote more attention to this emerging threat.
BackgroundTicks are hematophagous arthropods that transmit various bacterial, viral, and protozoan pathogens of public health significance. The lone star tick (Amblyomma americanum) is an aggressive human-biting tick that transmits bacterial and viral pathogens, and its bites are suspected of eliciting the alpha-gal syndrome, a newly emerged delayed hypersensitivity following consumption of red meat in the United States. While ongoing studies have attempted to investigate the contribution of different tick-inherent factors to the induction of alpha-gal syndrome, an otherwise understudied aspect is the contribution of the tick microbiome and specifically obligate endosymbionts to the establishment of the alpha-gal syndrome in humans.Materials and MethodsHere we utilized a high-throughput metagenomic sequencing approach to cataloging the entire microbial communities residing within different developmental stages and tissues of unfed and blood-fed ticks from laboratory-maintained ticks and three new geographical locations in the United States. The Quantitative Insights Into Microbial Ecology (QIIME2) pipeline was used to perform data analysis and taxonomic classification. Moreover, using a SparCC (Sparse Correlations for Compositional data) network construction model, we investigated potential interactions between members of the microbial communities from laboratory-maintained and field-collected ticks.ResultsOverall, Francisellaceae was the most dominant bacteria identified in the microbiome of both laboratory-raised and field-collected Am. americanum across all tissues and developmental stages. Likewise, microbial diversity was seen to be significantly higher in field-collected ticks compared with laboratory-maintained ticks as seen with a higher number of both Operational Taxonomic Units and measures of species richness. Several potential positive and negative correlations were identified from our network analysis. We observed a strong positive correlation between Francisellaceae, Rickettsiaceae, and Midichloriaceae in both developmental stages and tissues from laboratory-maintained ticks, whereas ovarian tissues had a strong positive correlation of bacteria in the family Xanthobacteraceae and Rhizobiaceae. A negative interaction was observed between Coxiellaceae and Francisellaceae in Illinois, and all the bacteria detected from ticks from Delaware were negatively correlated.ConclusionThis study is the first to catalog the microbiome of Am. americanum throughout its developmental stages and different tissue niches and report the potential replacement of Coxiellaceae by Francisellaceae across developmental stages and tissues tested except in ovarian tissues. These unique and significant findings advance our knowledge and open a new avenue of research to further understand the role of tick microbiome in tick-borne diseases and develop a holistic strategy to control alpha-gal syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.