In this experiment, the thermal lens technique is used with a modified arrangement of three lasers to induce a two‐color absorption. Two‐pump lasers, a variable wavelength orange dye laser (588–617 nm), a single line blue laser (488 nm), and a single line probe yellow laser (568 nm) are employed. A comparison is made between the magnitude of the thermal lens signal obtained with a one pump laser versus two pump lasers. The absorbing molecules are benzene and naphthalene in liquid n‐Hexane. The CH vibrational overtone spectra are obtained at room temperature for several concentrations. The molecules are excited to a high vibrational state (Δυ = 6) with the first laser and to an electronic level with a second laser (two‐color absorption). Using two pump lasers, the limit of detection of the molecule is several orders of magnitude more sensitive than using one pump laser. A nonlinear behavior of the integrated signal versus concentration is shown for the two‐color laser process. Linear behavior is shown for the one pump laser experiment. A model of signal amplification for a nonlinear absorption is presented to explain the results. The separation and identification of CH overtone bands in molecules and the sensitivity of the technique is emphasized to convey the potential use of CH overtone spectroscopy for imaging in thermal lens microscopy.
The overtone spectroscopy and intramolecular vibrational relaxation dynamics of CH chromophore in the fluoroform molecule is studied by a three-dimensional (3D) time-dependent wave-packet method, and the results are compared with the experiment and with those of a 2D (stretch–bend) wave-packet method. A third mode (CF symmetrical stretch) is included in order to explain the long time dynamics and the combination bands between the CF stretch fundamental and the Fermi polyad frequencies. The comparison with the 2D study is carried out by the use of a full set of dynamical and spectroscopic variables, based on the autocorrelation function of the bright states of each polyad. The spectroscopic variables then follow by Fourier transforming the autocorrelation function, while the dynamical ones emerge via survival probability in the frame of the dynamical statistical ensemble. These include several relaxation times and the number of cells and rates of phase–space exploration. The specific effect of the third mode is monitored by following the reduced dynamics of the system irrespective of the polyad stretch–bend dynamics, through population evolution. Dynamical results clearly reveal the third mode effects at very short and long times. In the last regime, we can observe a great span of different behaviors, depending on how the third mode excited states are involved. This richer variety of dynamical patterns cannot be observed in a two-mode model and justifies the present work. The spectroscopic results of both models are in good agreement with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.