Several of the actions of ethanol are mediated by gamma-aminobutyrate type A (GABA(A)) receptors. Here we demonstrated that mutant mice lacking protein kinase C epsilon (PKCepsilon) were more sensitive than wild-type littermates to the acute behavioral effects of ethanol and other drugs that allosterically activate GABA(A) receptors. GABA(A) receptors in membranes isolated from the frontal cortex of PKCepsilon null mice were also supersensitive to allosteric activation by ethanol and flunitrazepam. In addition, these mutant mice showed markedly reduced ethanol self-administration. These findings indicate that inhibition of PKCepsilon increases sensitivity of GABA(A) receptors to ethanol and allosteric modulators. Pharmacological agents that inhibit PKCepsilon may be useful for treatment of alcoholism and may provide a non-sedating alternative for enhancing GABA(A) receptor function to treat other disorders such as anxiety and epilepsy.
Anophthalmia and pituitary gland hypoplasia are both debilitating conditions where the underlying genetic defect is unknown in the majority of cases. We identified a patient with bilateral anophthalmia and absence of the optic nerves, chiasm and tracts, as well as pituitary gland hypoplasia and ear anomalies with a de novo apparently balanced chromosomal translocation, 46,XY,t(3;14)(q28;q23.2). Translocation breakpoint analysis using FISH and high-resolution microarray comparative genomic hybridization (CGH) has identified a 9.66 Mb deleted region on the long arm of chromosome 14 which includes the genes BMP4, OTX2, RTN1, SIX6, SIX1, and SIX4. Three other patients with interstitial deletions involving 14q22-23 have been described, all with bilateral anophthalmia, pituitary abnormalities, ear anomalies, and a facial phenotype similar to our patient. OTX2 is involved in ocular developmental defects, and the severity of the ocular phenotype in our patient and the other 14q22-23 deletion patients, suggests this genomic region harbors other gene/s involved in ocular development. BMP4 haploinsufficiency is predicted to contribute to the ocular phenotype on the basis of its expression pattern and observed murine mutant phenotypes. In addition, deletion of BMP4 and SIX6 is likely to contribute to the abnormal pituitary development, and SIX1 deletion may contribute to the ear and other craniofacial features. This indicates that contiguous gene deletion may contribute to the phenotypic features in the 14q22-23 deletion patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.