Background The rat mid‐thoracic contusion model has been used to study at‐level tactile allodynia, a common type of pain that develops after spinal cord injury (SCI). An important advantage of this model is that not all animals develop hypersensitivity. Therefore, it can be used to examine mechanisms that are strictly related to the development of pain‐like behaviour separately from mechanisms related to the injury itself. However, how to separate animals that develop hypersensitivity from those that do not is unclear. Methods The aims of the current study were to identify where hypersensitivity and spasticity develop and use this information to identify metrics to separate animals that develop hypersensitivity from those that do not to study differences in their behaviour. To accomplish these aims, a grid was used to localize hypersensitivity on the dorsal trunk relative to thoracic dermatomes and supraspinal responses to tactile stimulation were tallied. These supraspinal responses were used to develop a hypersensitivity score to separate animals that develop hypersensitivity, or pain‐like response to nonpainful stimuli. Results Similar to humans, the development of hypersensitivity could occur with the development of spasticity or hyperreflexia. Moreover, the time course and prevalence of hypersensitivity phenotypes (at‐, above‐, or below level) produced by this model were similar to that observed in humans with SCI. Conclusion However, the amount of spared spinal matter in the cord did not explain the development of hypersensitivity, as previously reported. This approach can be used to study the mechanisms underlying the development of hypersensitivity separately from mechanisms related to injury alone.
The rat mid-thoracic contusion model has been used to study at-level tactile allodynia after spinal cord injury (SCI), one of the more common types of allodynia. An important advantage of this model is that not all animals develop allodynia and, therefore, it could be used to more clearly examine mechanisms that are strictly related to pain development separately from mechanisms related to the injury itself. However, how to separate those that develop allodynia from those that do not is unclear. The aims of the current study were to identify where allodynia and spasticity develop and use this information to identify metrics that separate animals that develop allodynia from those that do not in order study difference in their behavior. To accomplish these aims, a standardized grid was used to localize pain on the dorsal trunk and map it to thoracic dermatomes, providing for the development of a pain score that relied on supraspinal responses and separated subgroups of animals. Similar to human studies, the development of allodynia often occurred with the development of spasticity or hyperreflexia. Moreover, the time course and prevalence of pain phenotypes (at-, above-, or below level) produced by this model were similar to that observed in humans who have sustained an SCI. However, the amount of spared spinal matter in the injured cord did not explain the development of allodynia, as was previously reported. This approach can be used to study the mechanism underlying the development of allodynia separately from mechanisms related to the injury alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.