When experts are immersed in a task, do their brains prioritize task-related activity? Most efforts to understand neural activity during well-learned tasks focus on cognitive computations and taskrelated movements. We wondered whether task-performing animals explore a broader movement landscape, and how this impacts neural activity. We characterized movements using video and other sensors and measured neural activity using widefield and two-photon imaging. Cortex-wide activity was dominated by movements, especially uninstructed movements not required for the task. Some uninstructed movements were aligned to trial events. Accounting for them revealed that neurons with similar trial-averaged activity often reflected utterly different combinations of cognitive and movement variables. Other movements occurred idiosyncratically, accounting for trial-by-trial fluctuations that are often considered "noise". This held true throughout task-learning and for extracellular Neuropixels recordings that included subcortical areas. Our observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity.
SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception.
Neocortical pyramidal neurons with somata in layers 5 and 6 are among the most visually striking and enigmatic neurons in the brain. These deep-layer pyramidal neurons (DLPNs) integrate a plethora of cortical and extracortical synaptic inputs along their impressive dendritic arbors. The pattern of cortical output to both local and long-distance targets is sculpted by the unique physiological properties of specific DLPN subpopulations. Here we revisit two broad DLPN subpopulations: those that send their axons within the telencephalon (intratelencephalic neurons) and those that project to additional target areas outside the telencephalon (extratelencephalic neurons). While neuroscientists across many subdisciplines have characterized the intrinsic and synaptic physiological properties of DLPN subpopulations, our increasing ability to selectively target and manipulate these output neuron subtypes advances our understanding of their distinct functional contributions. This Viewpoints article summarizes our current knowledge about DLPNs and highlights recent work elucidating the functional differences between DLPN subpopulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.