Sensory processing, and auditory processing in particular, is altered in individuals with neurodevelopmental disorders such as autism spectrum disorders (ASDs). The typical maturation of the auditory system is perturbed in these individuals during early development, which may underlie altered auditory reactivity that persists in later life. Of the many genes that regulate the auditory system development, loss-of-function mutations in the gene are strongly associated with language processing deficits and ASD. Therefore, using a novel knock-out rat model, we tested the impact of loss on auditory processing, filtering, and reactivity throughout development and young adulthood in male and female animals. Although hearing thresholds were not altered in knock-out animals, we found a reduction in response amplitudes and a delay in response latency of the auditory brainstem response (ABR) in juvenile knock-out rats compared with age-matched controls. Amplitudes and latency of the ABR largely normalized by adulthood, indicating a delayed maturation of auditory processing pathways in knock-out rats. Despite the reduced ABR amplitudes, adolescent knock-out animals displayed increased startle reactivity accompanied by disruptions in sensory filtering and sensorimotor gating across various conditions, most of which persisted in adulthood. All of these observations show striking parallels to disruptions reported in ASD. Our results also imply that developmental disruptions of sensory signal processing are associated with persistent changes in neural circuitries responsible for implicit auditory evoked behavior, emphasizing the need for interventions that target sensory processing disruptions early during development in ASD. This is the first study of brainstem auditory processing in a novel knock-out rat model with very high construct and face validity for autism spectrum disorders. Electrophysiological and behavioral measures of implicit auditory-evoked responses were systematically taken across developmental stages. Auditory processing, filtering, and reactivity disruptions show striking similarities to observations in autism. We also show for the first time that, whereas auditory brainstem responses normalize by adulthood, disruptions in brainstem-mediated auditory-evoked behavior persist. This indicates that early developmental perturbations in sensory processing can cause permanent maladaptive changes in circuitries responsible for auditory reactivity, underlining the importance for interventions early during development aiming at normalizing sensory processing.
Autism spectrum disorder (ASD) is characterized by social interaction and communication impairments, as well as restrictive/repetitive patterns of behavior, interests or activities, which can coexist with intellectual disability and altered sensory processing. To study the mechanisms underlying these core features of ASD, preclinical research has developed animal models with manipulations in ASD-linked genes, such as CNTNAP2. In order to fully interpret the findings from mechanistic studies, the extent to which these models display behaviors consistent with ASD must be determined. Toward that goal, we conducted an investigation of the consequences of a functional loss of Cntnap2 on ASD-related behaviors by comparing the performance of rats with a homozygous or heterozygous knockout of Cntnap2 to their wildtype littermates across a comprehensive test battery. Cntnap2 −/− rats showed deficits in sociability and social novelty, and they displayed repetitive circling and hyperlocomotion. Moreover, Cntnap2 −/− rats demonstrated exaggerated acoustic startle responses, increased avoidance to sounds of moderate intensity, and a lack of rapid audiovisual temporal recalibration; indicating changes in sensory processing at both the pre-attentive and perceptual levels. Notably, sensory behaviors requiring learned associations did not reveal genotypic differences, whereas tasks relying on automatic/implicit behaviors did. Ultimately, because these collective alterations in social, stereotypic, and sensory behaviors are phenotypically similar to those reported in individuals with ASD, our results establish the Cntnap2 knockout rat model as an effective platform to study not only the molecular and cellular mechanisms associated with ASD, but also the complex relationship between altered sensory processing and other core ASD-related behaviors.
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.
Hearing loss, including noise-induced hearing loss, is highly prevalent and severely hinders an individual's quality of life, yet many of the mechanisms that cause hearing loss are unknown. The pannexin (Panx) channel proteins, Panx1 and Panx3, are regionally expressed in many cell types along the auditory pathway, and mice lacking Panx1 in specific cells of the inner ear exhibit hearing loss, suggesting a vital role for Panxs in hearing. We proposed that Panx1 and/or Panx3 null mice would exhibit severe hearing loss and increased susceptibility to noise-induced hearing loss. Using the auditory brainstem response, we surprisingly found that Panx1 and Panx3 mice did not harbor hearing or cochlear nerve deficits. Furthermore, while Panx1 mice displayed no protection against loud noise-induced hearing loss, Panx3 mice exhibited enhanced 16- and 24-kHz hearing recovery 7 days after a loud noise exposure (NE; 12 kHz tone, 115 dB sound pressure level, 1 h). Interestingly, Cx26, Cx30, Cx43, and Panx2 were up-regulated in Panx3 mice compared with wild-type and/or Panx1 mice, and assessment of the auditory tract revealed morphological changes in the middle ear bones of Panx3 mice. It is unclear if these changes alone are sufficient to provide protection against loud noise-induced hearing loss. Contrary to what we expected, these data suggest that Panx1 and Panx3 are not essential for baseline hearing in mice tested, but the therapeutic targeting of Panx3 may prove protective against mid-high-frequency hearing loss caused by loud NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.