While complex inflammatory-like alterations are observed around the amyloid plaques of Alzheimer disease (AD), little is known about the molecular changes and cellular interactions that characterize this response. We investigate here in an AD mouse model the transcriptional changes occurring in tissue domains of 100 µm diameter around the amyloid plaques using spatial transcriptomics. We demonstrate early alterations in a gene co-expression network enriched for myelin and oligodendrocyte genes (OLIG), while a multicellular gene coexpression network of Plaque-Induced Genes (PIGs) involving the complement system, oxidative stress, lysosomes and inflammation is prominent in the later phase of the disease. We confirm the majority of the observed alterations at the cellular level using in situ sequencing on mouse and human brain sections. Genome-wide spatial transcriptomic analysis provides an unprecedented approach to untangle the dysregulated cellular network in the vicinity of pathogenic hallmarks of AD and other brain diseases.
The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries – even millennia – ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease.
We present a draft assembly of the genome of European pear (Pyrus communis) ‘Bartlett’. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of ‘Louise Bonne de Jersey’ and ‘Old Home’. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus×domestica). The ‘Bartlett’ genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.
Polygenic risk scores have identified that genetic variants without genome‐wide significance still add to the genetic risk of developing Alzheimer's disease (AD). Whether and how subthreshold risk loci translate into relevant disease pathways is unknown. We investigate here the involvement of AD risk variants in the transcriptional responses of two mouse models: APPswe/PS1L166P and Thy‐TAU22. A unique gene expression module, highly enriched for AD risk genes, is specifically responsive to Aβ but not TAU pathology. We identify in this module 7 established AD risk genes (APOE, CLU, INPP5D, CD33, PLCG2, SPI1, and FCER1G) and 11 AD GWAS genes below the genome‐wide significance threshold (GPC2, TREML2, SYK, GRN, SLC2A5, SAMSN1, PYDC1, HEXB, RRBP1, LYN, and BLNK), that become significantly upregulated when exposed to Aβ. Single microglia sequencing confirms that Aβ, not TAU, pathology induces marked transcriptional changes in microglia, including increased proportions of activated microglia. We conclude that genetic risk of AD functionally translates into different microglia pathway responses to Aβ pathology, placing AD genetic risk downstream of the amyloid pathway but upstream of TAU pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.