Iodine monochloride (ICl) is a potential off-gas product of molten salt reactors; monitoring this heteronuclear diatomic molecule is of great interest for both environmental and safety purposes. In this paper, we investigate the possibility of infrared monitoring of ICl by measuring the far-infrared absorption cross section of its fundamental band near 381 cm −1 . We have performed quantitative studies of the neat gas in a 20 cm cell at 25, 35, 50, and 70 °C at multiple pressures up to ∼9 Torr and investigated the temperature and pressure dependencies of the band's infrared cross section. Quantitative measurements were problematic due to sample adhesion to the cell walls and windows as well as reactions/possible hydrolysis of ICl to form HCl gas. Effects were mitigated by measuring only the neat gas, using short measurement times, and subtracting out the partial pressure of the HCl(g). The integrated band strength is shown to be temperature independent and was found to be equal to 9.1 × 10 −19 (cm 2 /molecule) cm −1 . As expected, the temperature dependence of the band profile showed only a small effect over this limited temperature range. We have also investigated using the absorption data along with inverse least squares multivariate methods for the quantitative monitoring of ICl effluent concentrations under different scenarios using infrared (standoff) sensing and compare these results with traditional Beer's law (univariate) techniques.
Hyperspectral imaging (HSI) continues to grow as a method for remote detection of vegetation, materials, minerals, and pure chemicals. We have used a longwave infrared (7.7 to 11.8 μm) imaging spectrometer in a static outdoor experiment to collect HSI data from 24 minerals and background materials to determine the efficacy with which HSI can remotely detect and distinguish both pure minerals and mineral mixtures at a 45-deg tilt angle relative to ground using two different backgrounds. Measurements were obtained separately for the minerals and materials mounted directly on both a bare plywood board and a board coated with aluminum foil: 19 powders (3 mixtures and 16 pure mineral powders) held in polyethylene bottle lids as well as five samples in rock form were taped directly to the boards. The primary goal of the experiment was to demonstrate that a longwave infrared library of solids and minerals collected as directional-hemispherical reflectance spectra in the laboratory could be used directly for HSI field identification along with simple algorithms for a rapid survey of the target materials. Prior to the experiment, all 24 mineral/inorganic samples were measured in the laboratory using a Fourier transform infrared spectrometer equipped with a gold-coated integrating sphere; the spectra were assimilated as part of a larger reference library of 21 pure minerals, 3 mixtures, and the polyethylene lid. Principal component analysis with mean-centering was used in an exploratory analysis of the HSI images and showed that, for the aluminum-coated board, the first principal component captured the difference between the signal that resembled a blackbody and the highly reflective aluminum background. In contrast, the second, third, and fourth principal components were able to discriminate the materials including phosphates, silicates, carbonates, and the mixtures. Results from generalized least squares target detection clearly showed that laboratory reference spectra of minerals could be utilized as targets with high fidelity for field detection.
Abstract. Pyrolysis is the first step in a series of chemical and physical processes that produce flammable organic gases from wildland fuels that can result in a wildland fire. We report results using a new time-resolved Fourier transform infrared (FTIR) method that correlates the measured FTIR spectrum with an infrared thermal image sequence, enabling the identification and quantification of gases within different phases of the fire process. The flame from burning fuel beds composed of pine needles (Pinus palustris) and mixtures of sparkleberry, fetterbush, and inkberry plants was the natural heat source for pyrolysis. Extractive gas samples were analyzed and identified in both static and dynamic modes synchronized to thermal infrared imaging: a total of 29 gases were identified including small alkanes, alkenes, aldehydes, nitrogen compounds, and aromatics, most previously measured by FTIR in wildland fires. This study presents one of the first identifications of phenol associated with both pre-combustion and combustion phases using ca. 1 Hz temporal resolution. Preliminary results indicate ∼2.5× greater phenol emissions from sparkleberry and inkberry compared to fetterbush, with differing temporal profiles.
Nanotechnology, the multidisciplinary field based on the exploitation of the unique physicochemical properties of nanoparticles (NPs) and nanoscale materials, has opened a new realm of possibilities for biological research and biomedical applications. The development and deployment of mRNA-NP vaccines for COVID-19, for example, may revolutionize vaccines and therapeutics. However, regulatory and ethical frameworks that protect the health and safety of the global community and environment are lagging, particularly for nanotechnology geared toward biological applications (ie, bionanotechnology). In this article, while not comprehensive, we attempt to illustrate the breadth and promise of bionanotechnology developments, and how they may present future safety and security challenges. Specifically, we address current advancements to streamline the development of engineered NPs for in vivo applications and provide discussion on nano–bio interactions, NP in vivo delivery, nanoenhancement of human performance, nanomedicine, and the impacts of NPs on human health and the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.