During early human pregnancy, the fetal placenta implants into the uterine mucosa (decidua)where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblastdecidual interactions underlie common diseases of pregnancy including pre-eclampsia and stillbirth. Here, we profile transcriptomes of ~70,000 single cells from first trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals new subsets of perivascular and stromal cells, which are located in distinct decidual layers.There are three major subsets of decidual NK cells, with distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes (https://cellphonedb.org/) and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. This identifies many regulatory interactions that prevent any damaging innate or adaptive immune responses in this environment. Our single cell atlas of the maternal-fetal interface reveals the cellular organization and interactions critical for placentation and reproductive success.During early pregnancy, the uterine mucosal lining, the endometrium, is transformed into decidua under the influence of progesterone. Decidualisation results from a complex and well-orchestrated differentiation program that involves all cellular elements of the mucosa: stromal, glandular, and immune cells, including the distinctive decidual Natural Killer cells (dNK) 1,2 . The blastocyst implants into the decidua and initially, before arterial connections are established, uterine glands are the source of histotrophic nutrition in the placenta 3,4 . Following implantation, placental extravillous trophoblast cells (EVT) invade through the decidua and move towards the spiral arteries, where they destroy the smooth muscle media and transform the arteries into high conductance vessels 5 . Balanced regulation of EVT invasion is critical to pregnancy success: arteries must be sufficiently transformed, but excessive invasion prevented, to ensure correct allocation of resources to both mother and baby 6 . The pivotal regulatory role of the decidua is obvious from the life-threatening, uncontrolled, trophoblast invasion that occurs when the decidua is absent as when the placenta implants on a previous cesarean section scar 7 .EVT have a unique HLA profile: they do not express the dominant T cell ligands, class I HLA-A and HLA-B or class II molecules 8,9 , but do express HLA-G and HLA-E and polymorphic HLA-C class I molecules. These trophoblast HLA ligands have receptors expressed by the dominant decidual immune cells, dNK, including maternal killer immunoglobulin-like receptors (KIR), that bind HLA-C molecules 10,11 . Certain combinations of maternal KIR and fetal HLA-C genetic variants are associated with pregnancy disorders such as pre-eclampsia, where trophoblast invasion is deficient 12 . However, detailed understanding of the cellular interactions in the decidua supporting early...
Preeclampsia is a serious complication of pregnancy in which the fetus receives an inadequate supply of blood due to failure of trophoblast invasion. There is evidence that the condition has an immunological basis. The only known polymorphic histocompatibility antigens on the fetal trophoblast are HLA-C molecules. We tested the idea that recognition of these molecules by killer immunoglobulin receptors (KIRs) on maternal decidual NK cells is a key factor in the development of preeclampsia. Striking differences were observed when these polymorphic ligand: receptor pairs were considered in combination. Mothers lacking most or all activating KIR (AA genotype) when the fetus possessed HLA-C belonging to the HLA-C2 group were at a greatly increased risk of preeclampsia. This was true even if the mother herself also had HLA-C2, indicating that neither nonself nor missing-self discrimination was operative. Thus, this interaction between maternal KIR and trophoblast appears not to have an immune function, but instead plays a physiological role related to placental development. Different human populations have a reciprocal relationship between AA frequency and HLA-C2 frequency, suggesting selection against this combination. In light of our findings, reproductive success may have been a factor in the evolution and maintenance of human HLA-C and KIR polymorphisms.
Pre-eclampsia is a common disorder that particularly affects first pregnancies. The clinical presentation is highly variable but hypertension and proteinuria are usually seen. These systemic signs arise from soluble factors released from the placenta as a result of a response to stress of syncytiotrophoblast. There are two sub-types: early and late onset pre-eclampsia, with others almost certainly yet to be identified. Early onset pre-eclampsia arises owing to defective placentation, whilst late onset pre-eclampsia may center around interactions between normal senescence of the placenta and a maternal genetic predisposition to cardiovascular and metabolic disease. The causes, placental and maternal, vary among individuals. Recent research has focused on placental-uterine interactions in early pregnancy. The aim now is to translate these findings into new ways to predict, prevent, and treat pre-eclampsia.
The traditional way to study the immunology of pregnancy follows the classical transplantation model, which views the fetus as an allograft. A more recent approach, which is the subject of this Review, focuses on the unique, local uterine immune response to the implanting placenta. This approach requires knowledge of placental structure and its variations in different species, as this greatly affects the type of immune response that is generated by the mother. At the implantation site, cells from the mother and the fetus intermingle during pregnancy. Unravelling what happens here is crucial to our understanding of why some human pregnancies are successful whereas others are not.
In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem cell-derived organoid cultures to generate 3D cultures of normal and decidualised human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.