Background: Uveal melanoma is an aggressive cancer with high metastatic risk. Recently, we identified a circulating cancer cell population that co-expresses neoplastic and leukocyte antigens, termed circulating hybrid cells (CHCs). In other cancers, CHCs are more numerous and better predict oncologic outcomes compared to circulating tumor cells (CTCs). We sought to investigate the potential of CHCs as a prognostic biomarker in uveal melanoma. Methods: We isolated peripheral blood monocular cells from uveal melanoma patients at the time of primary treatment and used antibodies against leukocyte and melanoma markers to identify and enumerate CHCs and CTCs by immunocytochemistry. Results: Using a multi-marker approach to capture the heterogeneous disseminated tumor cell population, detection of CHCs was highly sensitive in uveal melanoma patients regardless of disease stage. CHCs were detected in 100% of stage I-III uveal melanoma patients (entire cohort, n = 68), whereas CTCs were detected in 58.8% of patients. CHCs were detected at levels statically higher than CTCs across all stages (p = 0.05). Moreover, CHC levels, but not CTCs, predicted 3 year progression-free survival (p < 0.03) and overall survival (p < 0.04). Conclusion: CHCs are a novel and promising prognostic biomarker in uveal melanoma.
Advances in our understanding of the complex, multifaceted interactions between tumor epithelia, immune infiltrate, and tumor microenvironmental cells have been driven by highly multiplexed imaging technologies. These techniques are capable of labeling many more biomarkers than conventional immunostaining methods. However, multiplexed imaging techniques suffer from low detection sensitivity, cell loss—particularly in fragile samples—, and challenges with antibody labeling. Herein, we developed and optimized an oligonucleotide antibody barcoding strategy for cyclic immunofluorescence (cyCIF) that can be amplified to increase the detection efficiency of low-abundance antigens. Stained fluorescence signals can be readily removed using ultraviolet light treatment, preserving tissue and fragile cell sample integrity. We also extended the oligonucleotide barcoding strategy to secondary antibodies to enable the inclusion of difficult-to-label primary antibodies in a cyCIF panel. Using both the amplification oligonucleotides to label DNA barcoded antibodies and in situ hybridization of multiple fluorescently labeled oligonucleotides resulted in signal amplification and increased signal-to-background ratios. This procedure was optimized through the examination of staining parameters including staining oligonucleotide concentration, staining temperature, and oligonucleotide sequence design, resulting in a robust amplification technique. As a proof-of-concept, we demonstrate the flexibility of our cyCIF strategy by simultaneously imaging with the original oligonucleotide conjugated antibody (Ab-oligo) cyCIF strategy, the novel Ab-oligo cyCIF amplification strategy, as well as direct and indirect immunofluorescence to generate highly multiplexed images.
Background Levels of circulating hybrid cells (CHCs), a newly identified circulating tumor cell (CTC), correlate with disease stage and progression in cancer. We investigated their utility to risk‐stratify patients with clinically N0 (cN0) oral cavity squamous cell carcinoma (OCSCC), and to identify patients with occult cervical lymph node metastases (pN+). Methods We analyzed peripheral blood samples for CHCs with co‐expression of cytokeratin (tumor) and CD45 (leukocyte) from 22 patients with cN0 OCSCC using immunofluorescence microscopy, then correlated levels with pathologic lymph node status. Results CHC levels exceeded CTCs and correlated with the presence of both clinically overt (p = 0.002) and occult nodal metastases (p = 0.006). Conclusions For evaluated cN0 OCSCC patients, those with cN0 → pN+ status harbored elevated CHC levels compared to patients without occult disease. Our findings highlight a promising blood‐based biologic assay with potential utility to determine the necessity of surgical neck dissection for staging and treatment.
ObjectiveIncreased maternal adiposity during pregnancy is associated with offspring risk for psychiatric disorders. Inflammation secondary to adiposity is believed to be an important mechanism through which this effect occurs. Although increased adiposity introduces risk, not all children of overweight mothers develop these problems. Gestational factors that modify this risk are not well-understood. If maternal increased adiposity exerts its effects on offspring outcomes by increasing inflammation in the gestational environment, then anti-inflammatory inputs such as omega-3 fatty acids may be one protective factor. The goal of this study was to investigate whether maternal pre-pregnancy body mass index (BMI) and omega-3 fatty acid levels independently and/or interactively predicted offspring infant negative affect, an early life marker of risk for psychopathology.MethodsData came from a prospective study of women recruited during pregnancy and their 6 month old infants (N = 62; 40% female). Maternal pre-pregnancy BMI was pulled from medical charts and third trimester omega-3 fatty acid concentrations were assessed in plasma. Child negative affect was assessed using observer- and maternal-ratings at 6 months of age. Maternal inflammation was indexed by third trimester plasma levels of interleukin-6, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1.ResultsMaternal pre-pregnancy BMI was associated with increased infant negative affect whereas eicosapentaenoic acid was associated with less infant negative affect. Maternal omega-3 fatty acid levels moderated the effect of BMI on infant negative affect, such that omega-3 fatty acids buffered children against the negative consequences of increased adiposity. Supporting the role of maternal inflammation in these associations, maternal BMI and omega-3 fatty acid levels interacted to predict maternal third trimester inflammation. Further, maternal inflammation was associated with increased infant negative affect.ConclusionResults suggest that omega-3 supplementation during pregnancy may protect against offspring behavioral risk associated with increased maternal adiposity.
Although cutaneous squamous cell carcinoma (cSCC) is treatable in the majority of cases, deadly invasive and metastatic cases do occur. To date there are neither reliable predictive biomarkers of disease progression nor FDA-approved targeted therapies as standard of care. To address these issues, we screened patient-derived primary cultured cells from invasive/metastatic cSCC with 107 small-molecule inhibitors. In-house bioinformatics tools were used to cross-analyze drug responses and DNA mutations in tumors detected by whole-exome sequencing (WES). Aberrations in molecular pathways with evidence of potential drug targets were identified, including the Eph-ephrin and neutrophil degranulation signaling pathways. Using a screening panel of siRNAs, we identified EPHA6 and EPHA7 as targets within the Eph-ephrin pathway responsible for mitigating decreased cell viability. These studies form a plausible foundation for detecting biomarkers of high-risk progressive disease applicable in dermatopathology and for patient-specific therapeutic options for invasive/metastatic cSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.