SUMMARY
Autism spectrum disorders such as Rett syndrome (RTT) have been hypothesized to arise from defects in experience-dependent synapse maturation. RTT is caused by mutations in MECP2, a nuclear protein that becomes phosphorylated at S421 in response to neuronal activation. We show here that disruption of MeCP2 S421 phosphorylation in vivo results in defects in synapse development and behavior, implicating activity-dependent regulation of MeCP2 in brain development and RTT. We investigated the mechanism by which S421 phosphorylation regulates MeCP2 function and show by chromatin immunoprecipitation-sequencing that this modification occurs on MeCP2 bound across the genome. The phosphorylation of MeCP2 S421 appears not to regulate the expression of specific genes; rather, MeCP2 functions as a histone-like factor whose phosphorylation may facilitate a genome-wide response of chromatin to neuronal activity during nervous system development. We propose that RTT results in part from a loss of this experience-dependent chromatin remodeling.
MeCP2 is a methyl-DNA binding transcriptional regulator that contributes to the development and function of CNS synapses; however the requirement for MeCP2 in stimulus-regulated behavioral plasticity is not fully understood. Here we show that acute viral manipulation of MeCP2 expression in the Nucleus Accumbens (NAc) bidirectionally modulates amphetamine (AMPH)-induced conditioned place preference. Hypomorphic Mecp2 mutant mice have an increased number of NAc GABAergic synapses and show deficient AMPH-induced structural plasticity of NAc dendritic spines. Furthermore these mice show deficient plasticity of striatal immediate early gene inducibility following repeated AMPH administration. Intriguingly, psychostimulants induce phosphorylation of MeCP2 at Ser421, a site that regulates MeCP2's function as a repressor. Phosphorylation is selectively induced in GABAergic interneurons of the NAc, and its extent strongly predicts the degree of behavioral sensitization. These data reveal novel roles for MeCP2 in both mesolimbocortical circuit development and in the regulation of psychostimulant-induced behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.