Course-based undergraduate research experiences (CUREs) engage students with research experiences in a course format and can sometimes result in publication of that research. This interview study identifies student-perceived benefits of authoring a publication stemming from a CURE and explores student perceptions of authorship.
Salmonella bacteria may internalize into tomato pulp when warm tomatoes from the field are submerged into colder water. Several washing steps may follow the initial washing and packing of tomatoes at the packinghouses; the potential for internalization into tomatoes in subsequent washing steps when tomatoes have a cooler pulp temperature is unknown. Our objective was to evaluate Salmonella internalization into mature green and red tomatoes with ambient (21°C) and refrigeration (4°C) pulp temperatures when they were submerged into water at various temperature differentials, simulating repacking and fresh-cut operations. Red (4°C and 21°C) and mature green (21°C) tomatoes were submerged (6 cm) into a six-strain Salmonella cocktail (6 log CFU/ml) and maintained at ±5 and 0°C temperature differentials for varying time intervals, ranging from 30 s to 5 min. Following submersion, tomatoes were surface sterilized using 70% ethanol, the stem abscission zone and blossom end epidermis were removed, and cores were recovered, separated into three segments, and analyzed. Salmonella populations in the segments were enumerated by most probable number (MPN). The effects of temperature differential and maturity on Salmonella populations were analyzed; results were considered significant at a P value of ≥0.5. Internalized populations were not significantly different (P ≥0.5) across temperature differentials. Salmonella internalization was seen in tomatoes under all treatment conditions and was highest in the segment immediately below the stem abscission zone. However, populations were low (typically >1 log MPN per segment) and varied greatly across temperature differentials. This suggests that the temperature differential between tomatoes and water beyond the initial packinghouse may be less important than submersion time in Salmonella internalization.
Aging is accompanied by increased susceptibility to infections including with viral pathogens resulting in higher morbidity and mortality among the elderly. Significant changes in host metabolism can take place following virus infection. Efficient immune responses are energetically costly, and viruses divert host molecular resources to promote their own replication. Virus-induced metabolic reprogramming could impact infection outcomes, however, how this is affected by aging and impacts organismal survival remains poorly understood. RNA virus infection of Drosophila melanogaster with Flock House virus (FHV) is an effective model to study antiviral responses with age, where older flies die faster than younger flies due to impaired disease tolerance. Using this aged host-virus model, we conducted longitudinal, single-fly respirometry studies to determine if metabolism impacts infection outcomes. Analysis using linear mixed models on Oxygen Consumption Rate (OCR) following the first 72-hours post-infection showed that FHV modulates respiration, but age has no significant effect on OCR. However, the longitudinal assessment revealed that OCR in young flies progressively and significantly decreases, while OCR in aged flies remains constant throughout the three days of the experiment. Furthermore, we found that the OCR signature at 24-hours varied in response to both experimental treatment and survival status. FHV-injected flies that died prior to 48-or 72-hours measurements had a lower OCR compared to survivors at 48-hours. Our findings suggest the host's metabolic profile could influence the outcome of viral infections.
Despite the manner in which they are prepared, melons are commonly consumed raw without a processing step which would eliminate pathogenic bacteria. For those concerned about the safety of melons, including cantaloupe, honeydew, and watermelon, this 6-page fact sheet lists outbreaks associated with melons in the United States, Canada, and Europe, along with information about the location, pathogen, and incidence of illness. Written by Michelle D. Danyluk, Rachel McEgan, Ashley N. Turner, and Keith R. Schneider, and published by the UF Department of Food Science and Human Nutrition, November 2014. (UF/IFAS Photo by Thomas Wright) FSHN14-11/FS258: Outbreaks of Foodborne Illness Associated with Melons (ufl.edu)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.