Inflammasomes play a critical role in the development of vascular diseases. However, the molecular mechanisms activating the inflammasome in endothelial cells and the relevance of this inflammasome activation is far from clear. Here, we investigated the mechanisms by which Nlrp3 inflammasome is activated to result in endothelial dysfunction during coronary arteritis by Lactobacillus casei (L. casei) cell wall fragments (LCWE) in a mouse model for Kawasaki disease. Endothelial dysfunction associated with increased vascular cell adhesion protein 1 (VCAM-1) expression and endothelial-leukocyte adhesion was observed during coronary arteritis in mice treated with LCWE. Accompanied with these changes, the inflammasome activation was also shown in coronary arterial endothelium, which was characterized by a marked increase in caspase-1 activity and IL-1β production. In cultured endothelial cells, LCWE induced Nlrp3 inflammasome formation, caspase-1 activation and IL-1β production, which were blocked by Nlrp3 gene silencing or lysosome membrane stabilizing agents such as colchicine, dexamethasome, and ceramide. However, a potassium channel blocker glibenclamide or an oxygen free radical scavenger N-Acetyl-L-cysteine had no effects on LCWE-induced inflammasome activation. LCWE also increased endothelial cell lysosomal membrane permeability and triggered lysosomal cathepsin B release into cytosol. Silencing cathepsin B blocked LCWE-induced Nlrp3 inflammasome formation and activation in endothelial cells. In vivo, treatment of mice with cathepsin B inhibitor also abolished LCWE-induced inflammasome activation in coronary arterial endothelium. It is concluded that LCWE enhanced lysosomal membrane permeabilization and consequent release of lysosomal cathepsin B, resulting in activation of endothelial Nlrp3 inflammasome, which may contribute to the development of coronary arteritis.
Recent studies have indicated that the inflammasome plays a critical role in the pathogenesis of vascular diseases. However, the pathological relevance of this inflammasome activation, particularly in vascular cells, remains largely unknown. Here, we investigated the role of endothelial (Nucleotide‐binding Oligomerization Domain) NOD‐like receptor family pyrin domain containing three (Nlrp3) inflammasomes in modulating inter‐endothelial junction proteins, which are associated with endothelial barrier dysfunction, an early onset of obesity‐associated endothelial injury. Our findings demonstrate that the activation of Nlrp3 inflammasome by visfatin markedly decreased the expression of inter‐endothelial junction proteins including tight junction proteins ZO‐1, ZO‐2 and occludin, and adherens junction protein VE‐cadherin in cultured mouse vascular endothelial (VE) cell monolayers. Such visfatin‐induced down‐regulation of junction proteins in endothelial cells was attributed to high mobility group box protein 1 (HMGB1) release derived from endothelial inflammasome‐dependent caspase‐1 activity. Similarly, in the coronary arteries of wild‐type mice, high‐fat diet (HFD) treatment caused a down‐regulation of inter‐endothelial junction proteins ZO‐1, ZO‐2, occludin and VE‐cadherin, which was accompanied with enhanced inflammasome activation and HMGB1 expression in the endothelium as well as transmigration of CD43+ T cells into the coronary arterial wall. In contrast, all these HFD‐induced alterations in coronary arteries were prevented in mice with Nlrp3 gene deletion. Taken together, these data strongly suggest that the activation of endothelial Nlrp3 inflammasomes as a result of the increased actions of injurious adipokines such as visfatin produces HMGB1, which act in paracrine or autocrine fashion to disrupt inter‐endothelial junctions and increase paracellular permeability of the endothelium contributing to the early onset of endothelial injury during metabolic disorders such as obesity or high‐fat/cholesterol diet.
Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer’s disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc−/−), wild type (Asc+/+) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc−/− mice or substantially reduced in Asc shRNA transfected mice compared to Asc+/+ mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc−/− and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI), were also significantly attenuated in Asc−/− and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc−/− and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury.
Recent studies indicate that inflammasomes serve as intracellular machinery to initiate classical cytokine-mediated inflammatory responses and play a crucial role in the pathogenesis of cardiovascular diseases. However, whether or not the activation of endothelial inflammasomes directly causes cell dysfunction or tissue injury without recruitment of inflammatory cells is unknown. We explored the role of endothelial cell inflammasome activation in mediating tight junction disruption, a hallmark event of endothelial barrier dysfunction leading to endothelial hyperpermeability in diabetes. We used confocal microscopy to study the formation and activation of NOD-like receptor family pyrin domain containing-3 (Nlrp3) inflammasomes and expression of tight junction proteins in coronary arteries of streptozotocin-treated diabetic wild type and Nlrp3 gene-deleted mice. We found that Nlrp3 ablation prevented inflammasome activation and tight junction disassembly in the coronary arterial endothelium of diabetic mice. Similarly, Nlrp3 gene silencing prevented high glucose-induced down-regulation of tight junction proteins in cultured mouse vascular endothelial cells (MVECs). The high glucose-induced tight junction disruption and consequent endothelial permeability were attributed to increased release of the high mobility group box protein-1 (HMGB1), which is dependent on enhanced Nlrp3 inflammasome activity. Mechanistically, reducing reactive oxygen species (ROS) production abolished high glucose-induced inflammasome activation, tight junction disruption, and endothelial hyperpermeability in MVECs. Collectively, the ROS-dependent activation of endothelial Nlrp3 inflammasomes by hyperglycemia may be an important initiating mechanism to cause endothelial dysfunction. These effects could contribute to the early onset of endothelial injury in diabetes.
Recent studies have indicated a protective role of autophagy in regulating vascular smooth muscle cells homeostasis in atherogenesis, but the mechanisms controlling autophagy, particularly autophagy maturation, are poorly understood. Here, we investigated whether acid sphingomyelinase (ASM)-regulated lysosome function is involved in autophagy maturation in coronary arterial smooth muscle cells (CASMCs) in the pathogenesis of atherosclerosis. In coronary arterial wall of ASM-deficient (Smpd1−/−) mice on Western diet, there were high expression levels of both LC3B, a robust marker of autophagosomes (APs), and p62, a selective autophagy substrate, compared to those in wild type (Smpd1+/+) mice. By Western blotting and flow cytometry, atherogenic stimulation of Smpd1+/+ CASMCs with 7-ketocholesterol was found to significantly enhance LC3B expression and increase the content of both APs and autophagolysosomes (APLs). In Smpd1−/− CASMCs, such 7-ketocholesterol-induced increases in LC3B and p62 expression and APs were further augmented, but APLs formation was abolished. Analysis of fluorescence resonance energy transfer (FRET) between fluorescence-labeled LC3B and Lamp1 (lysosome marker) showed that 7-ketocholesterol markedly induced fusion of APs with lysosomes in Smpd1+/+ CASMCs, which was abolished in Smpd1−/− CASMCs. Moreover, 7-ketocholesterol-induced expression of cell dedifferentiation marker vimentin and proliferation was enhanced in Smpd1−/− CASMCs compared to those in Smpd1+/+ CASMCs. Lastly, overexpression of ASM further increased APLs formation in Smpd1+/+ CASMCs and restored APLs formation in Smpd1−/− CASMCs indicating that increased ASM expression is highly correlated with enhanced APLs formation. Taken together, our data suggest that the control of lysosome trafficking and fusion by ASM is essential to a normal autophagic flux in CASMCs, which implicates that the deficiency of ASM-mediated regulation of autophagy maturation may result in imbalance of arterial smooth muscle cell homeostasis and thus serve as an important atherogenic mechanism in coronary arteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.