The designer self-assembling peptide RADA16-I forms nanofiber matrices which have shown great promise for regenerative medicine and 3-dimensional cell culture. RADA16-I has a β-strand-promoting alternating hydrophobic/charged motif, but arrangement of β-strands into the nanofiber structure has not been previously determined. Here we present a structural model of RADA16-I nanofibers, based on solid-state NMR measurements on samples with different schemes for 13C isotopic labeling. NMR peak positions and line widths indicate an ordered structure composed of β-strands. The NMR data show that the nanofibers are composed of two stacked β-sheets stabilized by a hydrophobic core formed by alanine sidechains, consistent with previous proposals. However, the previously proposed antiparallel β-sheet structure is ruled out by 13C-13C dipolar couplings. Instead, neighboring β-strands within β-sheets are parallel, with a registry shift that allows for cross-strand staggering of oppositely charged arginine and aspartate sidechains. The resulting structural model is compared to nanofiber dimensions observed via images taken by transmission electron microscopy and atomic force microscopy. Multiple NMR peaks for each alanine sidechain were observed and could be attributed to multiple configurations of sidechain packing within a single scheme for intermolecular packing.
We report that synthetic RADA16-I peptide transforms to β-strand secondary structure and develops intermolecular organization into β-sheets when stored in the solid state at room temperature. Secondary structural changes were probed using solid state nuclear magnetic resonance spectroscopy (ssNMR) and Fourier transform infrared spectroscopy (FTIR). Intermolecular organization was analyzed via wide-angle X-ray diffraction (WAXD). Observed changes in molecular structure and organization occurred on the time scale of weeks during sample storage at room temperature. We observed structural changes on faster time scales by heating samples above room temperature or by addition of water. Analysis of hydration effects indicates that water can enhance the ability of the peptide to convert to β-strand secondary structure and assemble into β-sheets. However, temperature dependent FTIR and time dependent WAXD data indicate that bound water may hinder the assembly of β-strands into β-sheets. We suggest that secondary structural transformation and intermolecular organization together produce a water-insoluble state. These results reveal insights into the role of water in self-assembly of polypeptides with hydrophilic side chains, and have implications on future optimization of RADA16-I nanofiber production.
MAX8, a designer peptide known to undergo self-assembly following changes in temperature, pH, and ionic strength, has demonstrated usefulness for tissue engineering and drug delivery. It is hypothesized that the self-assembled MAX8 nanofiber structure consists of closed β-hairpins aligned into antiparallel β-sheets. Here, we report evidence from solid-state NMR spectroscopy that supports the presence of the hypothesized β-hairpin conformation within the nanofiber structure. Specifically, our (13)C-(13)C two-dimensional exchange data indicate spatial proximity between V3 and K17, and (13)C-(13)C dipolar coupling measurements reveal proximity between the V3 and V18 backbone carbonyls. Moreover, isotopic dilution of labeled MAX8 nanofibers did not result in a loss of the (13)C-(13)C dipolar couplings, showing that these couplings are primarily intramolecular. NMR spectra also indicate the existence of a minor conformation, which is discussed in terms of previously hypothesized nanofiber physical cross-linking and possible nanofiber polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.