G-protein coupled receptors (GPCRs) are the largest protein family of drug targets.Detailed mechanisms of binding are unknown for many important GPCR-ligand pairs due to the difficulties of GPCR recombinant expression, biochemistry, and crystallography. We describe our new method, ConDock, for predicting ligand binding sites in GPCRs using combined information from surface conservation and docking starting from crystal structures or homology models. We demonstrate the effectiveness of ConDock on well-characterized GPCRs such as the 2 adrenergic and A2A adenosine receptors. We also demonstrate that ConDock successfully predicts ligand binding sites from high-quality homology models. Finally, we apply ConDock to predict ligand binding sites on a structurally uncharacterized GPCR, GPER. GPER is the Gprotein coupled estrogen receptor, with four known ligands: estradiol, G1, G15, and tamoxifen.ConDock predicts that all four ligands bind to the same location on GPER, centered on L119, H307, and N310; this site is deeper in the receptor cleft than predicted by previous studies. We compare the sites predicted by ConDock and traditional methods that utilize information from surface geometry, surface conservation, and ligand chemical interactions. Incorporating sequence conservation information in ConDock overcomes errors introduced from physics-based scoring functions and homology modeling.
GPCRs (G-protein coupled receptors) are the largest family of drug targets and share a conserved structure. Binding sites are unknown for many important GPCR ligands due to the difficulties of GPCR recombinant expression, biochemistry, and crystallography. We describe our approach, ConDockSite, for predicting ligand binding sites in class A GPCRs using combined information from surface conservation and docking, starting from crystal structures or homology models. We demonstrate the effectiveness of ConDockSite on crystallized class A GPCRs such as the beta2 adrenergic and A2A adenosine receptors. We also demonstrate that ConDockSite successfully predicts ligand binding sites from high-quality homology models. Finally, we apply ConDockSite to predict the ligand binding sites on a structurally uncharacterized GPCR, GPER, the G-protein coupled estrogen receptor. Most of the sites predicted by ConDockSite match those found in other independent modeling studies. ConDockSite predicts that four ligands bind to a common location on GPER at a site deep in the receptor cleft. Incorporating sequence conservation information in ConDockSite overcomes errors introduced from physics-based scoring functions and homology modeling.
Traumatic myositis ossificans (MO) circumscripta is an uncommon nonhereditary pathophysiological result of muscular trauma that is detected by radiographic imaging three to four weeks following initial trauma. It is responsible for great global morbidity, with symptoms of prolonged pain, diminished flexibility, and stiffness. There is frequently a delay in diagnosis due to the generalized symptoms and varying radiographic presentation. The goal of therapy is to rule out serious complications (such as soft tissue sarcoma) and to restore strength and range of motion (ROM) as soon as possible. Here we detail the case of a 32-year-old male with a delayed diagnosis of MO who presented to the hospital with left lower extremity pain and swelling following a motor vehicle accident (MVA) that occurred one month prior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.