Summary Cereal yields decrease when grain fill proceeds under conditions of prolonged, moderately elevated temperatures. Endosperm‐endogenous processes alter both rate and duration of dry weight gain, but underlying mechanisms remain unclear. Heat effects could be mediated by either abnormal, premature cessation of storage compound deposition or accelerated implementation of normal development. This study used controlled environments to isolate temperature as the sole environmental variable during Zea mays kernel‐fill, from 12 days after pollination to maturity. Plants subjected to elevated day, elevated night temperatures (38°C day, 28°C night (38/28°C])) or elevated day, normal night (38/17°C), were compared with those from controls grown under normal day and night conditions (28/17°C). Progression of change over time in endosperm tissue was followed to dissect contributions at multiple levels, including transcriptome, metabolome, enzyme activities, product accumulation, and tissue ultrastructure. Integrated analyses indicated that the normal developmental program of endosperm is fully executed under prolonged high‐temperature conditions, but at a faster rate. Accelerated development was observed when both day and night temperatures were elevated, but not when daytime temperature alone was increased. Although transcripts for most components of glycolysis and respiration were either upregulated or minimally affected, elevated temperatures decreased abundance of mRNAs related to biosynthesis of starch and storage proteins. Further analysis of 20 central‐metabolic enzymes revealed six activities that were reduced under high‐temperature conditions, indicating candidate roles in the observed reduction of grain dry weight. Nonetheless, a striking overall resilience of grain filling in the face of elevated temperatures can be attributed to acceleration of normal endosperm development.
Crop improvement programs focus on characteristics that are important for plant productivity. Typically genes underlying these traits are identified and stacked to create improved cultivars. Hence, identification of valuable traits for plant productivity is critical for plant improvement. Here we describe an important characteristic for maize productivity. Despite the fact mature maize ears are typically covered with kernels, we find that only a fraction of ovaries give rise to mature kernels. Non-developed ovaries degenerate while neighboring fertilized ovaries produce kernels that fill the ear. Abortion occurs throughout the ear, not just at the tip. We show that the fraction of aborted ovaries/kernels is genetically controlled and varies widely among maize lines, and low abortion genotypes are rare. Reducing or eliminating ovary abortion could substantially increase yield, making this characteristic a new target for selection in maize improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.