We have evidence that 15-F₂-isoprostanes (15-F₂-IsoPs) regulate excitatory neurotransmitter release in ocular tissues. Although 5-F₂-IsoPs are abundantly produced in mammals, their pharmacological actions on neurotransmitter release remain unknown. In the present study, we compared the effect of the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP (C5-OH in β-position) and 5-epi-5-F(2t)-IsoP (C5-OH in α-position), on K⁺-evoked [³H]D-aspartate release in isolated bovine retina. We further examined the role of prostanoid receptors on the inhibitory action of 5-epi-5-F(2t)-IsoP on [³H]D-aspartate overflow. Isolated bovine retina were prepared for studies of K⁺-evoked release of [³H]D-aspartate using the superfusion method. 5-epi-5-F(2t)-IsoP (0.01 nM to 1 μM), attenuated K⁺-evoked [³H]D-aspartate release in a concentration-dependent manner, with the inhibitory effect of 26.9% (P < 0.001; IC₂₅ = 0.2 μM) being achieved at 1 μM concentration. Its 5-(S)-OH-epimer, 5-F(2t)-IsoP (0.1 nM-1 μM), exhibited an inhibitory biphasic action, yielding a maximal response of 35.7% (P < 0.001) at 10 nM concentration of the drug (IC₂₅ value of 3 nM). Although the prostanoid-receptor antagonists, AH 6809 (10 μM; EP₁₋₃/DP) and BAY-u3405 (10 μM; DP/Tx) exhibited no effect on 5-epi-5-F(2t)-IsoP (10 nM-1 μM)-mediated inhibition, SC-19220 (1 μM; EP₁) completely reversed 5-epi-5-F(2t)-IsoP (0.1 μM and 1 μM)-induced attenuation of K⁺-evoked [³H]D-aspartate release. Similarly, both SC-51322 (10 μM; EP₁ and AH 23848 (1 μM; EP₄) reversed the inhibitory action elicited by 5-epi-5-F(2t)-IsoP (0.1 μM) on the neurotransmitter release. We conclude that the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP and 5-epi-5-F(2t)-IsoP, attenuate K⁺-induced [³H]D-aspartate release in isolated bovine retina presumably via prostanoid receptor dependent mechanisms. The trans-orientation of the allylic hydroxyl group at position C5 accounts for the apparent biphasic response exhibited by 5-F(2t)-IsoP on excitatory neurotransmitter release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.