Summary Many viruses induce hepatitis in humans, highlighting the need to understand the underlying mechanisms of virus-induced liver pathology. The murine coronavirus, mouse hepatitis virus (MHV), causes acute hepatitis in its natural host and provides a useful model for understanding virus interaction with liver cells. The MHV accessory protein, ns2, antagonizes the type I interferon response and promotes hepatitis. We show that ns2 has 2′,5′-phosphodiesterase activity, which blocks the interferon inducible 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway to facilitate hepatitis development. Ns2 cleaves 2′,5′-oligoadenylate, the product of OAS, to prevent activation of the cellular endoribonuclease RNase L and consequently block viral RNA degradation. An ns2 mutant virus was unable to replicate in the liver or induce hepatitis in wild-type mice, but was highly pathogenic in RNase L deficient mice. Thus, RNase L is a critical cellular factor for protection against viral infection of the liver and the resulting hepatitis.
Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2=,5=-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types-neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I·C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.T he murine coronavirus mouse hepatitis virus (MHV) is an enveloped, positive-strand RNA virus of the coronavirus family within the nidovirus order. MHV is a collection of strains with tropisms for different organs, including the liver and central nervous system (CNS), and thus provides models for the study of acute encephalitis and hepatitis, as well as chronic demyelinating disease. The MHV-A59 strain (A59) used in this study induces mild encephalitis and moderate hepatitis. Studies of the pathogenesis of MHV strains and recombinant chimeric MHVs have shown that postentry virus-host interactions have significant impact on organ tropism and virulence in MHV-infected mice (1, 2).The type I interferon (IFN) response is an early innate response that is crucial to survival of mice following infection with many viruses, including MHV (3-5). During infection, viral doublestranded RNA (dsRNA) is recognized by pattern recognition receptors, such as MDA5 in the case of MHV in most cell types (3-5); this leads to the synthesis of type I IFN (Fig. 1). Alpha/beta IFN (IFN-␣/) induces expression of interferon-stimulated genes (ISGs) encoding pattern recognition receptors, transcription factors, and antiviral effectors, including multiple oligoadenylate synthetase (OAS) proteins. Viral dsRNA directly binds to and activates OAS to synthesize 2=,5=-linked oligoaden...
sST2, a member of the IL-1 receptor family and a marker of fibrosis and inflammation increases over time among patients with HIV and this increase is attenuated by statin therapy in HIV. This effect may relate to immunomodulatory mechanisms of statins.
Purpose of reviewThe aim of this study was to discuss the role of glucagon-like peptide-1 (GLP-1) receptor signalling in reducing lung inflammation and potential use for GLP-1 receptor agonists (GLP-1RAs) in management of asthma. Recent findingsAlthough GLP-1RA are currently used for the treatment of type 2 diabetes (T2D) and weight loss in obesity, there is much interest in expanding the indications for use in other diseases, including inflammatory pulmonary disease. In animal models of both acute and chronic pulmonary disease, use of GLP-1RA reduces airway inflammation, obstruction and fibrosis. In particular, GLP-1 receptor (GLP-1R) signalling seems to inhibit allergen-induced type 2 inflammation, making it an attractive agent for asthma. Results are especially promising in disease processes with disturbed metabolic regulation, such as T2D or metabolic syndrome. Retrospective clinical studies demonstrate promising evidence for the use of GLP-1RAs in comorbid diabetes and asthma, although prospective human studies are limited. SummaryHere, we discuss the biology of GLP-1 and GLP-1R signalling, review the preclinical and mechanistic evidence for how GLP-1R signalling may reduce pulmonary inflammation, and summarize recent and upcoming clinical studies. Ultimately, targeting GLP-1R signalling may represent a novel approach for asthma therapy that is glucocorticoid sparing and possibly disease modifying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.