Food allergies are becoming increasingly prevalent, especially in young children. Epidemiological evidence from the past decade suggests a role of vitamin D in food allergy pathogenesis. Links have been made between variations in sunlight exposure, latitude, birth season and vitamin D status with food allergy risk. Despite the heightened interest in vitamin D in food allergies, it remains unclear by which exact mechanism(s) it acts. An understanding of the roles vitamin D plays within the immune system at the cellular and genetic levels, as well as the interplay between the microbiome and vitamin D, will provide insight into the importance of the vitamin in food allergies. Here, we discuss the effect of vitamin D on immune cell maturation, differentiation and function; microbiome; genetic and epigenetic regulation (eg DNA methylation); and how these processes are implicated in food allergies.
Background Trends in food allergies prompted investigation into the underlying mechanisms. Genetic and epigenetic factors are of high interest, and, in particular, the interplay between genes relating to immune factors directly and indirectly involved in food allergy pathogenesis. We sought to determine potential links between gene expression and epigenetic factors relating to Toll‐like receptor (TLR) pathways and childhood food allergies. Methods In a cross‐sectional study, samples from 80 children with and without food allergies were analysed for gene expression, DNA methylation and a range of immune factors relating to TLR pathways. TLR2, TLR4, CD14, IL5, IL13 and vitamin D were explored. Results The importance of these immune factors appeared to vary between the different types of food allergies. Expression of TLR2 (P < .001), TLR4 (P = .014) and CD14 (P = .028) varied significantly between children with no food allergy, allergy to nuts and peanuts, and allergy to eggs. DNA methylation in the promoter regions of these genes had a significant association with gene expression. These trends persisted when subjects were stratified by nut allergy vs no nut allergy. Furthermore, TLR2 (P = .001) and CD14 (P = .007) expressions were significantly lower in children with food allergies when compared to those without. Conclusion Gene expression of TLR pathway genes was directly related to food allergy type, and DNA methylation had an indirect effect. TLR2 pathways are of significant interest in nut allergies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.