Abstract. Cytokines produced in the tumour microenvironment exert an important role in cancer pathogenesis and in the inhibition of disease progression. Cancer of the cartilage is termed metastatic chondrosarcoma; however, the signaling events resulting in mesenchymal cell transformation to sarcoma have yet to be fully elucidated. The present study aimed to characterize the cytokine expression profile in the human JJ012 chondrosarcoma cell line, as well as the effect of cytostatic proline-rich polypeptide-1 (PRP-1). Western blot experiments demonstrated that the levels of suppressor of cytokine signaling 3 (SOCS3) were upregulated in chondrocytes compared with chondrosarcoma cells. Addition of PRP-1 restored the expression of the tumor suppressors, SOCS3 and ten-eleven-translocation methylcytosine dioxygenase 1 and 2 (TET1/2), in a dose-responsive manner. It is known that methylation of histone H3K9 was eliminated from the promoters of the inflammation-associated genes. PRP-1 inhibited H3K9 demethylase activity with an IC 50 (concentration required to give half-maximal inhibition) value of 3.72 µg/ml in the chondrosarcoma cell line. Data obtained from ELISA experiments indicated that the expression of interleukin-6 (IL-6) in chondrosarcoma cells was 86-fold lower compared with that in C28 chondrocytes. In the present study, a 53-fold downregulation of IL-6 expression in co-culture of chondrosarcoma cells and C28 chondrocytes was identified as well. Downregulation of IL-6 expression has been documented in numerous other tumor types, although the reasons for this have not been fully established. In chondrosarcoma, IL-6 manifests itself as an anti-inflammatory agent and, possibly, as an anti-tumorigenic factor. To explore protein-DNA interactions leading to such differences, a gel-shift chemiluminescent assay was performed. Gel shifts were observed for chondrosarcoma and chondrocytes in the lanes that contained nuclear cell extract and oligo-IL-6 DNA. Notably, the DNA-protein complexes in C28 chondrocytes were markedly larger compared with those in chondrosarcoma cells. The mechanisms that underpin such differences, and characterization of the interacting proteins, remain to be fully elucidated.
Case. A fifteen-year-old male patient sustained a posteriorly dislocated right capital femoral Delbet type Ib epiphyseal fracture-separation and a right acetabular posterior column fracture after a low-energy trip and fall. The capital femoral epiphysis was closed reduced and fixed with cannulated screws on an urgent basis. He underwent acetabular osteosynthesis via a Kocher-Langenbeck approach two days thereafter. Twenty-two months after injury, he was weight-bearing on the right lower extremity without radiologic evidence of avascular necrosis or clinical evidence of pain or functional deficit. Conclusion. Fracture-separation of the capital femoral epiphysis comprises only 8% of skeletally immature femoral neck fractures in the Delbet and Colonna classification. Prognosis is worse with ipsilateral hip dislocation due to the risk of avascular necrosis from disruption of the medial femoral circumflex artery. Urgent referral to a trauma center and treatment by appropriate specialists enables good long-term results after this uncommon traumatic injury pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.