Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike conventional antibiotics, repeated use of the polymers does not lead to drug resistance. Transcriptomic analysis of bacteria further supports development of resistance to antibiotics but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-, methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis, and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macromolecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and have excellent potential as systemic antimicrobials against MDR infections.
A series of vitamin E-containing biodegradable antimicrobial cationic polycarbonates is designed and synthesized via controlled organocatalytic ring-opening polymerization. The incorporation of vitamin E significantly enhances antimicrobial activity. These polymers demonstrate broad-spectrum antimicrobial activity against various microbes, e.g., S. aureus (Gram-positive), E-coli (Gram-negative) and C. albicans (fungi). More importantly, the co-delivery of such polymers with selected antibiotics (e.g., doxycycline) shows high synergism towards difficult-to-kill bacteria P. aeruginosa. These findings suggest that these vitamin E-functionalized polycarbonates are potentially useful antimicrobial agents against challenging bacterial/fungal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.