Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function.
a First co-authors. b Last co-authors.ABSTRACT Background: Normosmic congenital hypogonadotropic hypogonadism (ncHH) is caused by the deficient production, secretion, or action of gonadotropin-releasing hormone (GnRH). Its typical clinical manifestation is delayed puberty and azoospermia. Homozygous and compound heterozygous mutations in the GNRHR gene (4q13.2) are the most frequent genetic causes of ncHH. Objectives: (i) Characterization at the molecular level (genetic origin and functional effect) of a unique homozygous mutation (p.Gly99Glu) in a ncHH man; (ii) to provide a comprehensive catalog of GNRHR mutations with genotype-phenotype correlation and comparison of in vitro studies vs. in silico prediction tools. Material and Methods: A ncHH man and his parents, in whom we performed the following: (i) Sanger sequencing, qPCR of the GNRHR gene; (ii) chromosome 4 SNP array; and (iii) competition binding assay and inositol phosphate signaling assay. PubMed and Human Genome Mutation Database (HGMD) search for GNRHR mutations. Bioinformatic analysis of 55 reported variants. Results: qPCR showed two GNRHR copies in the index case. SNP array revealed the inheritance of two homologous chromosomes 4 from the mother (maternal heterodisomy; hUPD) with two loss of heterozygosity regions, one of them containing the mutated gene (maternal isodisomy; iUPD). Functional studies for the p.Gly99Glu mutation demonstrated a right-shifted GnRH-stimulated signaling response. Bioinformatic tools show that commonly used in silico tools are poor predictors of the function of ncHH-associated GNRHR variants. Discussion: Functional analysis of the p.Gly99Glu mutation is consistent with severely decreased GnRH binding affinity (a severe partial loss-of-function mutation). Complete LOF variants are associated with severe and severe/moderate phenotype, whereas partial LOF variants show wide range of clinical manifestations. Conclusion: This is the first ncHH patient carrying a novel causative missense mutation of GNRHR with proven 'severe pLOF' due to maternal hUPD/iUPD of chromosome 4. Our literature review shows that functional studies remain essential both for diagnostic and potential therapeutic purposes.
Objective To determine the mechanisms of inflammation‐induced left ventricular (LV) remodeling and effects of blocking circulating tumor necrosis factor alpha (TNF‐α) in a model of systemic inflammation. Methods Seventy Sprague‐Dawley rats were divided into three groups: the control group, the collagen‐induced arthritis (CIA) group, and the anti‐TNF‐α group. Inflammation was induced in the CIA and anti‐TNF‐α groups. Following the onset of arthritis, the anti‐TNF‐α group received the TNF‐α inhibitor, etanercept, for 6 weeks. LV geometry and function were assessed with echocardiography. Circulating inflammatory markers were measured by ELISA and LV gene expression was assessed by comparative TaqMan® polymerase chain reaction. Results The LV relative gene expression of pro‐fibrotic genes, transforming growth factor β (TGFβ) (p = 0.03), collagen I (Col1) (p < 0.0001), and lysyl oxidase (LOX) (p = 0.002), was increased in the CIA group compared with controls, consistent with increased relative wall thickness (p = 0.0009). Col1 and LOX expression in the anti‐TNF‐α group were similar to controls (both, p > 0.05) and tended to be lower compared to the CIA group (p = 0.06 and p = 0.08, respectively), and may, in part, contribute to the decreased relative wall thickness in the anti‐TNF‐α group compared to the CIA group (p = 0.03). In the CIA group, the relative gene expression of matrix metalloproteinase 2 (MMP2) and MMP9 was increased compared to control (p = 0.04) and anti‐TNF‐α (p < 0.0001) groups, respectively. Conclusion Chronic systemic inflammation induces fibrosis and dysregulated LV extracellular matrix remodeling by increasing local cardiac pro‐fibrotic gene expression, which is partially mediated by TNF‐α. Inflammation‐induced LV diastolic dysfunction is likely independent of myocardial fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.