Restructuring of monodisperse soot aggregates due to coatings of secondary organic aerosol (SOA) derived from hydroxyl radical-initiated oxidation of toluene, p-xylene, ethylbenzene, and benzene was investigated in a series of photo-oxidation (smog) chamber experiments. Soot aggregates were generated by combustion of ethylene using a McKenna burner, treated by denuding, size-selected by a differential mobility analyzer, and injected into a smog chamber, where they were exposed to low vapor pressure products of aromatic hydrocarbon oxidation, which formed SOA coatings. Aggregate restructuring began once a threshold coating mass was reached, and the degree of the subsequent restructuring increased with mass growth factor. Although significantly compacted, fully processed aggregates were not spherical, with a mass-mobility exponent of 2.78, so additional SOA was required to fill indentations between collapsed branches of the restructured aggregates before the dynamic shape factor of coated particles approached 1. Trends in diameter growth factor, effective density, and dynamic shape factor with increasing mass growth factor indicate distinct stages in soot aggregate processing by SOA coatings. The final degree and coating mass dependence of soot restructuring were found to be the same for SOA coatings from all four aromatic precursors, indicating that the surface tensions of the SOA coatings are similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.