Error correction codes are majorly important to detect and correct occurred errors because of various noise sources. When the technology is scaling down, the effect of noise sources is high. The coupling capacitance is one of the main constraints to affect the performance of on-chip interconnects. Because of coupling capacitance, the crosstalk is introduced at on-chip interconnecting wires. To control the single or multiple errors, an efficient error correction code is required. By combining crosstalk avoidance with error control code, the reliable intercommunication is obtained in network-on-chip (NoC)-based system on chip (SoC). To reduce the power consumption of error control codes, the bus invert-based low-power code is integrated to network interface of NoC. The advanced work is designed and implemented with Xilinx 14.7; thereby the performance of improved NoC is evaluated and compared with existing work. The 8 × 8 mesh-based NoC is simulated at various traffic patterns to analyze the energy dissipation and average data packet latency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.