Drying plays a crucial role in various industries such as food production, agriculture, Siddha, Ayurveda, and medical fields. To achieve controlled drying conditions, a heat pump dryer is considered an effective method, allowing for precise control of parameters like temperature, humidity, and air velocity. In this study, a heat pump dryer was designed and constructed to investigate the drying characteristics of Bermuda grass (Cynodon dactylon) at different velocities (1.5 m/s, 2.0 m/s, and 2.5 m/s) using three types of drying chambers: fluidized bed dryer, tray dryer, and combined dryer (a combination of bed and tray). The heat pump system utilized R134a as the refrigerant. The performance of the heat pump dryer in the three drying chambers was analyzed using Bermuda grass as the drying product. The Moisture Removal Rate (MRR) was calculated for various combinations of velocity and drying chamber, and it was observed that the combined dryer achieved a higher MRR at all three velocities compared to the tray and fluidized bed dryers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.