Abstract:The role of Demand Side Management (DSM) with Distributed Energy Storage (DES) has been gaining attention in recent studies due to the impact of the latter on energy management in the smart grid. In this work, an Energy Scheduling and Distributed Storage (ESDS) algorithm is proposed to be installed into the smart meters of Time-of-Use (TOU) pricing consumers possessing in-home energy storage devices. Source of energy supply to the smart home appliances was optimized between the utility grid and the DES device depending on energy tariff and consumer demand satisfaction information. This is to minimize consumer energy expenditure and maximize demand satisfaction simultaneously. The ESDS algorithm was found to offer consumer-friendly and utility-friendly enhancements to the DSM program such as energy, financial, and investment savings, reduced/eliminated consumer dissatisfaction even at peak periods, Peak-to-Average-Ratio (PAR) demand reduction, grid energy sustainability, socio-economic benefits, and other associated benefits such as environmental-friendliness.
The problem of multiple hypothesis testing (HT) for arbitrarily varying sources (AVS) is considered. The achievable error probability exponents (reliabilities) region is derived, optimal decision schemes are described. The result extends the known ones by Fu and Shen and by Tuncel. The Chernoff bounds for AVS binary and M -ary HT are specified via indication of a Sanov theorem for those sources.
We study the problem of multiple hypothesis testing (HT) in view of a rejection option. That model of HT has many different applications. Errors in testing of M hypotheses regarding the source distribution with an option of rejecting all those hypotheses are considered. The source is discrete and arbitrarily varying (AVS). The tradeoffs among error probability exponents/reliabilities associated with false acceptance of rejection decision and false rejection of true distribution are investigated and the optimal decision strategies are outlined. The main result is specialized for discrete memoryless sources (DMS) and studied further. An interesting insight that the analysis implies is the phenomenon (comprehensible in terms of supervised/unsupervised learning) that in optimal discrimination within M hypothetical distributions one permits always lower error than in deciding to decline the set of hypotheses. Geometric interpretations of the optimal decision schemes are given for the current and known bounds in multi-HT for AVS's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.