Spectral and imaging data sets from Mars Reconnaissance Orbiter and Mars Odyssey, as well as spectral and topographic data from Mars Global Surveyor, are used to understand the origin of in‐place rock units found in the intercrater plains and Hellas circumferential graben floors of Noachis Terra, Mars. The rocky units are interpreted as effusive volcanic plains on the basis of broad areal extent, structural competence, association with topographic lows, distinct mineralogy from regolith, and lack of sedimentary textures or minerals associated with aqueous processes. Some rocky expanses contain at least two compositionally distinct units. The relatively light‐toned unit exhibits a higher plagioclase/pyroxene ratio than the lower, dark‐toned unit. Both units exhibit ~10% olivine enrichment compared to surrounding regolith. These units are heavily degraded and exhibit crater model ages between ~3.80 and 4.0 Ga, making these some of the oldest preserved volcanic plains accessible by remote sensing. They are found in association with Hellas ring structures, where the westward extent of these rocky units is limited to the outermost ring structure. Fracturing associated with the Hellas impact may have enabled magmas to ascend from the base of the crust in the circum‐Hellas region. Identification of these units as volcanic materials extends previous estimates for volume of outgassed volatiles. Though the estimated volcanic volume increase is minor, the local effects could have been significant. The role of multi‐ring impact basins in providing a spatial control on Martian highlands volcanism and subsurface mineralization may have been underestimated in the past.
A state-of-the-art, rapid laser-heating technique, referred to as the laser-driven thermal reactor, was used to characterize National Institute of Standards and Technology Standard Reference Material (SRM) diesel and biodiesel fuels, as well as a prototype biodiesel fuel. Also described are the various issues associated with carrying out these measurements under different operating conditions (i.e., temperature, pressure, heating rate, and sample mass). The technique provides measurement of various relevant thermochemical characteristics; for this investigation the focus was on the sample endothermic/exothermic behavior, specific heat release rate and total specific heat release. The experimental apparatus consists of a copper sphere-shaped reactor mounted within a vacuum chamber, along with integrated optical, gas-supply, and computer-controlled data-acquisition subsystems. At the center of the reactor, the sample rests on a thermocouple. The reactor is heated from opposing sides by a near-infrared laser to achieve nearly uniform sample temperature. The change in sample temperature with time (i.e., thermogram) is recorded and compared to a baseline (no sample) thermogram obtained prior to the experiment. Then processed (using an equation for thermal energy conservation) for the thermochemical information of interest. Results indicated that the modification of the baseline is attributed to residue remaining after completion of reactions and a change in the oxide layer of the reactor sphere outer surface. Thus, the sphere must be pre-oxidized in air using the laser prior to any sample or baseline measurement. This investigation provides preliminary evaluation of SRM biodiesel fuels, with the results being consistent with distillation curve work reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.