An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied onto transected nerves (graft‐antenna). The graft‐antenna is bonded to rat sciatic nerves by a laser without sutures; it does not migrate after implantation and is able to trigger steady compound muscle action potentials for 12 weeks (CMAP ≈1.3 mV). Eight weeks postoperatively, axon regeneration is facilitated in transected nerves that are repaired with the graft‐antenna and stimulated by the TMS for 1 h per week. The graft‐antenna is an innovative and minimally‐invasive device that functions concurrently as a wireless stimulator and adhesive scaffold for nerve repair.
Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique by Sliow et al instead uses a graft-antenna - a metal ring wrapped around the damaged nerve - powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry; all power is provided wirelessly. This paper examines the microscopic mechanisms which allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring’s edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In agreement with in vivo measurements on rat sciatic nerves, direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.