The L-asparaginase (E. C. 3. 5. 1. 1) enzyme was purified to homogeneity from Pseudomonas aeruginosa 50071 cells that were grown on solid-state fermentation. Different purification steps (including ammonium sulfate fractionation followed by separation on Sephadex G-100 gel filtration and CM-Sephadex C50) were applied to the crude culture filtrate to obtain a pure enzyme preparation. The enzyme was purified 106-fold and showed a final specific activity of 1900 IU/mg with a 43% yield. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme revealed it was one peptide chain with M r of 160 kDa. A Lineweaver-Burk analysis showed a K m value of 0.147 mM and V max of 35.7 IU. The enzyme showed maximum activity at pH 9 when incubated at 37ºC for 30 min. The amino acid composition of the purified enzyme was also determined.
Antimicrobial resistance (AMR) is a recurring global problem, which constantly demands new antimicrobial compounds to challenge the resistance. It is well known that essential oils (EOs) have been known for biological activities including antimicrobial properties. In this study, EOs from seven aromatic plants of Asir region of southwestern Saudi Arabia were tested for their antimicrobial efficacy against four drug resistant pathogenic bacterial isolates (Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Streptococcus typhimurium) and one fungal isolate (Candida albicans). Chemical compositions of EOs were determined by gas chromatography-mass spectrometry (GC-MS). The results revealed that EOs from Mentha cervina, Ocimum basilicum, and Origanum vulgare proved most active against all isolates with inhibitory zone range between 17 and 45 mm. The lowest minimum inhibitory concentration (MIC) of 0.025mg/ml was observed for Staph. aureus and Streptococcus pyogenes with EO of Origanum vulgare. All the three EOs showed significant anticandida activity. The results related to EOs from Mentha cervina, Ocimum basilicum, and Origanum vulgare demonstrated significant antimicrobial efficacy against drug resistant microorganisms.
Collectively, our results suggest DNA damage-mediated activation by FXY-1 in lung cancer cells leading to extensive apoptosis through the mitochondrial pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.