A Radio mean labeling of a connected graph is an injective function from the vertex set, , to the set of natural numbers such that for any two distinct vertices and of , ⌈ ⌉. The radio mean number of , , is the maximum number assigned to any vertex of. The radio mean number of , , is the minimum value of , taken over all radio mean labeling of. This work has three contributions. The first one is proving two theorems which find the radio mean number for cycles and paths. The second contribution is proposing an approximate algorithm which finds an upper bound for radio mean number of a given graph. The third contribution is that we introduce a novel integer linear programing formulation for the radio mean problem. Finally, the experimental results analysis and statistical test proved that the Integer Linear Programming Model overcame the proposed approximate algorithm according to CPU time only. On the other hand, both the Integer Linear Programming Model and the proposed approximate algorithm had the same upper bound of the radio mean number of G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.