This paper shows how different simulation and soil-structure interaction can affect the response of concrete culverts embedded in dry cohesionless soils. Three simulations have been considered. In the first, second, and third simulations, the applied loads have been determined based on empirical relations of PCA without including the soil-structure interaction. The differences between these simulations are in using the beam element for the first one while using the frame element for the second one and the plane strain element for the third one. In addition to neglect the soil-structure interaction, the axial and shear deformations have been neglected in the first simulation. The axial deformations have been included in the second simulation; finally, all of the axial and shear deformations are included in the third simulation.
In a steel structure, choosing the connections type are one of the most important parameters in design consideration. How a connection type affects the vibration of steel beams has been investigated in this paper. The most effective connection type in reducing beam vibration has been highlighted. The study was conducted using different finite element models to simulate each connection type. Firstly, the model was validated by comparing its results with the results obtained by the analytical approach. In the numerical model, a linear frequency analysis was performed to determine beam natural frequency, then it has been compared with the corresponding value obtained by the Euler-Bernoulli approximations for simply supported beams. After that, two analysis procedures have been executed, steady-state analysis and transient analysis. In the steady-state analysis, a harmonic load with different frequencies was applied to the beam mid-span, while an impulsive load has been applied in the transient analysis. The results indicate that the deflection could be reduced by 72%, furthermore steady vibration of the beam can be reduced by 81% with using one of the moment connections instead of the traditional shear connection.
This paper studies the effect of mean wind velocity on tall building. Wind velocity, wind profile and wind pressure have been considered as a deterministic phenomenon. Wind velocity has been modelled as a half-sinusoidal wave. Three exposures have been studied B, C, and D. Wind pressure was evaluated by equation that joined wind pressure with mean wind velocity, air density, and drag coefficient. Variations of dynamic load factor for building tip displacement and building base shear were studied for different building heights, different mode shapes, different terrain exposures, and different aspect ratios of building plan. SAP software, has been used in modelling and dynamic analysis for all case studies. Results For different building heights considered maximum dynamic load factor (DLF) occurs in height range from 100-150m because fundamental building frequency is so close as to dominate wind frequency. Effects of higher modes become insignificant for height greater than 175m. Effect of three different terrain exposures B, C, and D on DLF for tips displacement and building base shear have been insignificant effect on response of tip displacement and building base shear. . Finally, effect of aspect ratio for different building heights with dynamic load factor (DLF) for tips displacement and for building base shear have approaching 2, fundamental building frequency is so closed to dominate wind frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.