ObjectivesThe aim of the present study was to determine the prevalence and to characterize extended-spectrum β-lactamases- and/or carbapenemases-producing Enterobacteriaceae among Enterobacteriaceae isolated from retail chicken meat in Zagazig, Egypt.MethodsOne hundred and six Enterobacteriaceae isolates were collected from retail chicken meat samples purchased in Zagazig, Egypt in 2013. Species identification was done by MALDI-TOF MS. Screening for ESBL-E was performed by inoculation of isolates recovered from meat samples onto the EbSA (Cepheid Benelux, Apeldoorn, the Netherlands) selective screening agar. ESBL production was confirmed by combination disc diffusion test with clavulanic acid (Rosco, Taastrup, Denmark). Carbapenemases production was confirmed with double disk synergy tests. Resistance genes were characterized by PCR with specific primers for TEM, SHV, and CTX-M and carbapenemases (KPC, NDM, OXA-48, IMP and VIM). PCR products of CTX-M genes were purified and sequenced. Phylogenetic grouping of E. coli was performed by a PCR-based method.ResultsOf these 106 isolates 69 (65.09%) were ESBL producers. Twelve (11.32%) of these isolates were also phenotypically class B carbapenemases producer. TEM genes were detected in 61 (57.55%) isolates. 49 (46.23%) isolates harbored CTX-M genes, and 25 (23.58%) carried genes of the SHV family. All CPE belonged to the NDM group. The predominant CTX-M sequence type was CTX-M-15 (89.80%). The majority (80%) of the ESBL-EC belonged to low virulence phylogroups A and B1.ConclusionsThis is the first study from Egypt reporting high rates of ESBLs and carbapenemases (65.09% and 11.32%, respectively) in Enterobacteriaceae isolated from retail chicken meat. These results raise serious concerns about public health and food safety as retail meat could serve as a reservoir for these resistant bacteria which could be transferred to humans through the food chain.
ObjectivesThe aim of this study was to determine the prevalence of extended-spectrum β-lactamase (ESBL) and carbapenemase production among Enterobacteriaceae isolated from ambulatory patients with gastrointestinal complaints admitted to El-Ahrar General Hospital, Zagazig, Egypt in the period between January 2013 and May 2013.MethodsOne hundred and thirteen Enterobacteriaceae isolates were recovered from 100 consecutive Egyptian patients with community–onset gastrointestinal complaints. The fecal samples were plated directly on selective EbSA-ESBL Screening Agar and on MacConkey agar. Isolate identification was performed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Screening for ESBLs and carbapenemases production was done by both the automated VITEK®2 system with AST N198 and by disk diffusion method. Real-time PCR and sequencing were used to characterize the resistance genes. Phylogroups of the E. coli isolates were determined by a triplex PCR-based method.ResultsOf 100 patients screened for fecal colonization with extended-spectrum β-lactamase -producing Enterobacteriaceae (ESBL-E) and carbapenemase- producing Enterobacteriaceae (CPE), 68 were colonized with ESBL-E whereas five patients were positive for CPE. One hundred and thirteen Enterobacterceae isolates were recovered from 100 fecal samples, they belonged to E. coli (n = 72), Klebsiella pneumoniae (n = 23), Enterobacter cloacae(n = 3), Salmonella spp. (n = 1) and other Enterobacterceae isolates (n = 14). The bla
CTX-M gene was detected in 89.04% (65/73) of the ESBL-producing Enterobacteriaceae, whereas bla
SHV and bla
TEM were detected in 30.14% (22/73) and 19.18% (14/73) respectively. Three out of 5 carbapenem-resistant isolates harbored New Delhi metallo-beta-lactamase (NDM) and 2 produced Verona integron-encoded metallo- beta -lactamase (VIM). Twenty-two (47.83%) of the ESBL positive isolates were multidrug resistant (MDR). Phylogenetic analysis showed that, of the 51 ESBL-EC isolates, 17 belonged to group B2, 13 to group D, 11 to group A and 10 to group B1.ConclusionsNearly two-thirds of the Enterobacteriaceae isolates recovered from feces of ambulatory patients with community–onset gastrointestinal complaints admitted to El-Ahrar General Hospital, Zagazig, Egypt were ESBL producers and one in every 20 patients included in our study was colonized by carbapenemase-producing Enterobacteriaceae. These high colonization rates are worrying, therefore prudent antimicrobial use should be adopted in Egyptian community settings.
This study investigated the prevalence of Staphylococcus aureus enterotoxin genes and shiga toxin -producing Escherichia coli (STEC) in fish and evaluated quality parameters of examined fish. A total of 150 fish samples belonging to 6 species (25/each species) were cultured on Baird-Parker agar and eosin methylene blue agar. Staphylococcal enterotoxin genes and virulence genes (stx1, stx2, and eaeA genes) in E. coli serotypes were determined by multiplex PCR. Aerobic plate count (APC), Enterobacteriaceae count, coliform count, and Pseudomonas count were performed. Also, levels of total volatile base nitrogen and histamine in fish were determined. The prevalence of S. aureus ranged from 4% to 36% and count from 2 to 4 logCFU/g. The sed, sea, and seb genes in S. aureus isolates were detected with percentages of 40%, 26.6%, and 20%, respectively. The E. coli serotype O26 carried stx1, stx2, and eaeA. The APCs, Enterobacteriaceae counts, and Pseudomonas counts ranged from 5.1 to 7.2, from 2.01 to 3.9, and from 2.1 to 3.1 log CFU/g, respectively. The most probable number (MPN) of coliform ranged from 1.3 to 3.6 log/g. Levels of total volatile basic nitrogen and histamine ranged from 29.2 to 12.2 and from 0.6 to 4.6 mg/100 g, respectively. Also, the value of thiobarbituric acid was highly significant (1.1 ± 0.084 mg MDA/kg) in Trachurus mediterraneus samples compared with those levels obtained from other fish species. Our findings concluded that those fish species could constitute a public health hazard as fish are reservoirs for enterotoxigenic S. aureus and Shiga toxin producing E. coli strains. This study highlighted the importance of screening of fish for enterotoxigenic S. aureus strains and STEC isolates, and also assessing the quality parameters of fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.