Robot navigation in indoor environments has become an essential task for several applications, including situations in which a mobile robot needs to travel independently to a certain location safely and using the shortest path possible. However, indoor robot navigation faces challenges, such as obstacles and a dynamic environment. This paper addresses the problem of social robot navigation in dynamic indoor environments, through developing an efficient SLAM-based localization and navigation system for service robots using the Pepper robot platform. In addition, this paper discusses the issue of developing this system in a way that allows the robot to navigate freely in complex indoor environments and efficiently interact with humans. The developed Pepper-based navigation system has been validated using the Robot Operating System (ROS), an efficient robot platform architecture, in two different indoor environments. The obtained results show an efficient navigation system with an average localization error of 0.51 m and a user acceptability level of 86.1%.
Agricultural projects in different parts of the world depend on underground water wells. Recently, there have been many unfortunate incidents in which children have died in abandoned underground wells. Providing topographical information for these wells is a prerequisite to protecting people from the dangers of falling into them, especially since most of these wells become buried over time. Many solutions have been developed recently, most with the aim of exploring these well areas. However, these systems suffer from several limitations, including high complexity, large size, or inefficiency. This paper focuses on the development of a smart exploration unit that is able to investigate underground well areas, build a 3D map, search for persons and animals, and determine the levels of oxygen and other gases. The exploration unit has been implemented and validated through several experiments using various experiment testbeds. The results proved the efficiency of the developed exploration unit, in terms of 3D modeling, searching, communication, and measuring the level of oxygen. The average accuracy of the 3D modeling function is approximately 95.5%. A benchmark has been presented for comparing our results with related works, and the comparison has proven the contributions and novelty of the proposed system's results.
Social robots have the potential to revolutionize the way we interact with technology, providing a wide range of services and applications in various domains, such as healthcare, education, and entertainment. However, most existing social robotics platforms are operated based on embedded computers, which limits the robot’s capabilities to access advanced AI-based platforms available online and which are required for sophisticated physical human–robot interactions (such as Google Cloud AI, Microsoft Azure Machine Learning, IBM Watson, ChatGPT, etc.). In this research project, we introduce a cloud-based framework that utilizes the benefits of cloud computing and clustering to enhance the capabilities of social robots and overcome the limitations of current embedded platforms. The proposed framework was tested in different robots to assess the general feasibility of the solution, including a customized robot, “BuSaif”, and commercialized robots, “Husky”, “NAO”, and “Pepper”. Our findings suggest that the implementation of the proposed platform will result in more intelligent and autonomous social robots that can be utilized by a broader range of users, including those with less expertise. The present study introduces a novel methodology for augmenting the functionality of social robots, concurrently simplifying their utilization for non-experts. This approach has the potential to open up novel possibilities within the domain of social robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.