Background: To evaluate the face-specific quality of life after hypoglossal-facial jump nerve suture for patients with long-term facial paralysis. Methods: A single-center retrospective cohort study was performed. Forty-one adults (46% women; median age: 55 years) received a hypoglossal-facial jump nerve suture. Sunnybrook and eFACE grading was performed before surgery and at a median time of 42 months after surgery. The Facial Clinimetric Evaluation (FaCE) survey and the Facial Disability Index (FDI) were used to quantify face-specific quality of life after surgery. Results: Hypoglossal-facial jump nerve suture was successful in all cases without tongue dysfunction. After surgery, the median FaCE Total score was 60 and the median FDI Total score was 76.3. Most Sunnybrook and eFACE grading subscores improved significantly after surgery. Younger age was the only consistent independent predictor for better FaCE outcome. Additional upper eyelid weight loading further improved the FaCE Eye comfort subscore. Sunnybrook grading showed a better correlation to FaCE assessment than the eFACE. Neither Sunnybrook nor eFACE grading correlated to the FDI assessment. Conclusion: The hypoglossal-facial jump nerve suture is a good option for nerve transfer to reanimate the facial muscles to improve facial motor function and face-specific quality of life.
4 Laryngoscope, 127:1288-1295, 2017.
Objectives/Hypothesis: Using surface electrostimulation, we aimed to use facial nerve mapping (FNM) in healthy subjects and patients with postparetic facial synkinesis (PPFS) to define functional facial target regions that can be stimulated selectively.Study Design: Single-center prospective cohort study. Methods: FNM was performed bilaterally in 20 healthy subjects and 20 patients with PPFS. Single-pulse surface FNM started at the main trunk of the facial nerve and followed the peripheral branches in a distal direction. Stimulation started with 0.1 mA and increased in 0.1 mA increments. The procedure was simultaneously video recorded and evaluated offline.Results: A total of 1,873 spots were stimulated, and 1,875 facial movements were evaluated. The stimulation threshold was higher on the PPFS side (average = 9.8 AE 1.0 mA) compared to the contralateral side (4.1 AE 0.8 mA) for all stimulation sites or compared to healthy subjects (4.1 AE 0.5 mA; all P < .01). In healthy subjects, selective electrostimulation AE one unintended coactivation was possible at all sites in >80% of cases, with the exception of pulling up the corner of the mouth (65%-75%). On the PPFS side, stimulation was possible for puckering lips movements in 60%/75% (selective stimulation AE one coactivation, respectively), blinking in 55%/80%, pulling up the corner of the mouth in 50%/85%, brow raising in 5%/85, and raising the chin in 0%/35% of patients, respectively.Conclusions: FNM mapping for surgical planning and selective electrostimulation of functional facial regions is possible even in patients with PPFS. FNM may be a tool for patient-specific evaluation and placement of electrodes to stimulate the correct nerve branches in future bionic devices (e.g., for a bionic eye blink).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.