Placentae of 22 one-humped camel concepti with crown-rump lengths (CRL) ranging from 2.5 to 26 cm were studied. The placentae were processed for light, transmission and scanning electron microscopy of exposed surfaces and microvascular corrosion casts. In very early stages of pregnancy (2.5–4.5 cm CRL) three froms of fetomaternal interrelationship are described. (1) Precontact, where the mononuclear trophoblast cells are still separated from the uterine epithelium by a gap containing interareolar histotroph. Both fetal and maternal epithelia develop apical ectoplasmic pads in this location. (2) Apposition, where microvilli of the apical cell membrane of the trophoblast contact the uterine epithelium focally. Multinuclear trophoblast giant cells develop beside the population of already present mononuclear trophoblast cells. Uterine ectoplasmic pads can be observed. (3) Adhesion occurs when apical cell membranes of fetal and maternal epithelia adhere to each other closely, thus forming a ‘normal’ intercellular space of 20 nm width, without any intervening uterine luminal space. Microvillous interdigitation in this location varies from a non-microvillous ‘smooth adhesion’, to a distinctly villiform ‘rough adhesion’, and a ‘semismooth adhesion’ is achieved when trophoblastic microvilli make intimate contact with the non-microvillous uterine apical cell membranes of ectoplasmic pads. This fetomaternal attachment process is sufficient until the conceptus reaches approximately 9 cm CRL. Then, from 10 to 13 cm CRL, additional anchorage of the placenta to the endometrium is accomplished by the growth of temporary grooves and ridges of the allantochorion and the endometrium, which indent each other in a complementary fashion. The height of these groove-ridge structures increases gradually in 14 to 18 cm CRL fetuses, and they also widen at about 25 cm CRL, thus forming globular fetal troughs and irregular, thick maternal ridges. These together create units responsible for improved fetomaternal anchorage and metabolic exchange for the increasing needs of the growing fetus.
Morphological investigation of kidneys, parotid glands, caecum, rectum, rumen, reticulum and feet in 58 roe deer Capreolus capreolus, shot in the forest (n=17) and in the field (n=41) did not show any significant differences between forest and field ecotypes. There were, however, differences in rumen papillary development, related to seasonal differences in forage quality and availability. Forest roe deer showed a wider range of the papillary surface enlargement factor than field roe deer in summer and had their optimal papillary development in autumn. Field roe deer showed a reduction of absorptive ruminal surface from summer to winter of almost 50%. Their adaptive range is within that of the species and does not indicate the ecotype separation.
This study aimed to elucidate development of the areola in the early dromedary placenta in comparison with that of the pig and mare. Placental tissues from 25 pregnant camels were obtained from Cairo abattoir and prepared for light, scanning and transmission electron microscopy by routine methods. Vascular casts were made by injection of 4 : 1 liquid plastic mixture of mercox and methylmethacrylate. Areolar formation was first observed at 4.5 cm curved-crown-rump CVR length, while by 5-9 cm CVR length, the endometrial surface was uneven and studded with numerous uterine gland openings, where corresponding foetal areolae were barely detectable and the foetal areolar cells were of variable appearance and covered with long microvilli. At 10-13 cm CVR length the uterine gland openings developed irregular folds and the maternal areolar cells showed numerous apical blebs. At 14-29 cm CVR length the foetal areolae showed a great increase in height at the expense of their width. At 30-34 cm (CVR) length the maternal areolae appeared discoid and sharply demarcated from the surrounding inter-areolar tissues and the foetal areolae were rounded to irregular in shape with well-developed areolar rims. The vascular casts showed a widely meshed capillary network on the maternal areola, connecting with the pre- and post-capillary vessels, whereas the foetal side showed a relatively dense capillary meshwork. These studies indicate that the areola in the placenta of the one-humped camel is of the regular type like in the pig, and is poorly vascularized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.