High-porosity metal foams have been extensively studied as an attractive candidate for efficient and compact heat exchanger design. With the advancements in additive manufacturing, such foams can be manufactured with controlled topology to yield highly tailorable mechanical and transport properties. In this study, a lattice Boltzmann method (LBM)-based pore-scale model is implemented to simulate the fluid flow in additively manufactured (AM) metal foams with unit cell topologies of Cube, Face Diagonal (FD)-Cube, Tetrakaidecahedron (TKD), and Octet lattices. The pressure drop versus average velocity profiles predicted by the LBM model were validated against in-house measurements on AM lattice samples with the same unit cell topologies. Based on the simulation results, a novel hybrid model is proposed to accurately predict the volume averaged flow properties (permeability and inertial coefficients) of the four structures. Convenient correlations for those flow properties as a function of porosity and fiber diameter are constructed. The effects of the AM print qualities on the flow properties are also discussed. The advantages of the hybrid model compared to the polynomial fitting approach for determining flow properties are discussed and compared quantitatively. The hybrid model and presented results are valuable for flow and thermal transport evaluation when designing new metal foams for specific applications and with different materials and topologies. The presented correlations based on pore-scale simulations can also be conveniently used in volume-averaged models to predict the macroscale flow behavior in such complex structures.
Particle-to-supercritical carbon dioxide (sCO2) heat exchanger is a critical component in next-generation concentrating solar power (CSP) plants. The inherently low heat transfer between falling particles and sCO2 imposes a challenge towards economic justification of levelized cost of electricity produced through solar energy. Introduction of integrated porous media with the walls bounding particle flow has the potential to enhance the overall particle-to-sCO2 heat exchanger performance. This paper presents an experimental study on heat transfer characterization of additively manufactured lattice frame material based on Octet-shaped unit cell with particles and air as working fluids. The lattice structures were additively manufactured in Stainless Steel (SS) 316L and SS420 (with 40% bronze infiltration) via Binder jetting process, where the lattice porosities were varied between 0.75 and 0.9. The mean particle diameters were varied from 266-966 μm. The effective thermal conductivity and averaged heat transfer coefficient were determined through steady-state experiments. It was found that the presence of lattice enhances the effective thermal conductivity by 2-4 times when compared to packed bed of particles alone. Furthermore, for gravity-assisted particle flow through lattice panel, significantly high convective heat transfer coefficients ranging from 200-400 W/m2K were obtained for the range of particle diameters tested. The superior thermal transport properties of Octet-shape-based lattice frame for particle flow makes it a very promising candidate for particle-to-sCO2 heat exchanger for CSP application.
This paper presents experimentally obtained heat transfer characteristics of additively manufactured lattice frame material based on Octet-shaped unit cell. Binder jetting technology was used to print lattices in Stainless Steel 316L material. Lattice porosities ranging from 0.75 to 0.9 were investigated where thermal transport characteristics were obtained for void space occupied by air and particles. Particle diameters were varied from 266–966 microns. Effective thermal conductivity and averaged heat transfer coefficient was calculated through steady-state experiments. It was found that presence of lattice enhances the effective thermal conductivity by 2–4 times when compared to packed bed of particles alone. Furthermore, for gravity-assisted particle flow through lattice panel, significantly high convective heat transfer coefficients ranging from 200–400 W/m2K were obtained for the range of particle diameters tested. The superior thermal transport properties of Octet-shape based lattice frame material for particle flow through them makes it a very promising candidate for particle-to-supercritical carbon dioxide (sCO2) heat exchanger in concentrating solar power (CSP) application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.