SummaryObjective: The objective of this study is to develop an algorithm to accurately identify children with severe early onset childhood obesity (ages 1-5.99 years) using structured and unstructured data from the electronic health record (EHR). Introduction: Childhood obesity increases risk factors for cardiovascular morbidity and vascular disease. Accurate definition of a high precision phenotype through a standardize tool is critical to the success of large-scale genomic studies and validating rare monogenic variants causing severe early onset obesity. Data and Methods: Rule based and machine learning based algorithms were developed using structured and unstructured data from two EHR databases from Boston Children's Hospital (BCH) and Cincinnati Children's Hospital and Medical Center (CCHMC). Exclusion criteria including medications or comorbid diagnoses were defined. Machine learning algorithms were developed using cross-site training and testing in addition to experimenting with natural language processing features. Results: Precision was emphasized for a high fidelity cohort. The rule-based algorithm performed the best overall, 0.895 (CCHMC) and 0.770 (BCH). The best feature set for machine learning employed Unified Medical Language System (UMLS) concept unique identifiers (CUIs), ICD-9 codes, and RxNorm codes. Conclusions: Detecting severe early childhood obesity is essential for the intervention potential in children at the highest long-term risk of developing comorbidities related to obesity and excluding patients with underlying pathological and non-syndromic causes of obesity assists in developing a high-precision cohort for genetic study. Further such phenotyping efforts inform future practical application in health care environments utilizing clinical decision support. Research Article
Background and Objectives. The prevalence of severe obesity in children has doubled in the past decade. The objective of this study is to identify the clinical documentation of obesity in young children with a BMI ≥ 99th percentile at two large tertiary care pediatric hospitals. Methods. We used a standardized algorithm utilizing data from electronic health records to identify children with severe early onset obesity (BMI ≥ 99th percentile at age <6 years). We extracted descriptive terms and ICD-9 codes to evaluate documentation of obesity at Boston Children's Hospital and Cincinnati Children's Hospital and Medical Center between 2007 and 2014. Results. A total of 9887 visit records of 2588 children with severe early onset obesity were identified. Based on predefined criteria for documentation of obesity, 21.5% of children (13.5% of visits) had positive documentation, which varied by institution. Documentation in children first seen under 2 years of age was lower than in older children (15% versus 26%). Documentation was significantly higher in girls (29% versus 17%, p < 0.001), African American children (27% versus 19% in whites, p < 0.001), and the obesity focused specialty clinics (70% versus 15% in primary care and 9% in other subspecialty clinics, p < 0.001). Conclusions. There is significant opportunity for improvement in documentation of obesity in young children, even years after the 2007 AAP guidelines for management of obesity.
Aesthetics and Visual Impact This wearable art wedding gown incorporates the elements by following design principles, resulting in an unusual and compelling design work.Contextual Review and Concept A study of wedding gowns, prompted by a tour of London's Victoria and Albert Museum, coupled with a review of fashion repurposing, inspired the design context. The concept was to repurpose, or give a new purpose to (Merriam-Webster, 2015), white paper for a wearable art wedding gown, particularly for use as a store display piece, but with actual wedding events also a possibility.Process, technique, and execution The repurposed materials included white copy paper, white and silver feathers from an earlier project, and remnants of nylon tulle. Aluminized polyester/cotton ironing board fabric was purchased for the underskirt and the self-lined midriff tube top silhouette. Silver polyester lame´ formed the underskirt hemline ruffle and silver glittered grey crinkled polyester formed the train. White paper pieces were edge painted silver, cut into feather shapes, and hot glued onto the base fabric. Small white feathers were sewn among the paper feathers on the skirt and top. Silver holiday feathers accented the halter top. CohesivenessThe feather and paper theme is maintained throughout both pieces, with a stream of soft tulle cascading around the side edge to tie pieces together rhythmically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.