Klebsiella pneumoniae (Kp) has gained prominence in the last two decades due to its global spread as a multidrug-resistant (MDR) pathogen. Further, carbapenem-resistant Kp are emerging at an alarming rate. The objective of this study was (1) to evaluate the prevalence of β-lactamases, especially carbapenemases, in Kp isolates from India, and (2) determine the most prevalent sequence type (ST) and plasmids, and their association with β-lactamases. Clinical samples of K. pneumoniae (n = 65) were collected from various pathology labs, and drug susceptibility and minimum inhibitory concentrations (MIC) were detected. Whole genome sequencing (WGS) was performed for n = 22 resistant isolates, including multidrug-resistant (MDR) (n = 4), extensively drug-resistant (XDR) (n = 15), and pandrug-resistant (PDR) (n = 3) categories, and genomic analysis was performed using various bioinformatics tools. Additional Indian MDRKp genomes (n = 187) were retrieved using the Pathosystems Resource Integration Center (PATRIC) database. Detection of β-lactamase genes, location (on chromosome or plasmid), plasmid replicons, and ST of genomes was carried out using CARD, mlplasmids, PlasmidFinder, and PubMLST, respectively. All data were analyzed and summarized using the iTOL tool. ST231 was highest, followed by ST147, ST2096, and ST14, among Indian isolates. blaampH was detected as the most prevalent gene, followed by blaCTX-M-15 and blaTEM-1. Among carbapenemase genes, blaOXA-232 was prevalent and associated with ST231, ST2096, and ST14, which was followed by blaNDM-5, which was observed to be prevalent in ST147, ST395, and ST437. ST231 genomes were most commonly found to carry Col440I and ColKP3 plasmids. ST16 carried mainly ColKP3, and Col(BS512) was abundantly present in ST147 genomes. One Kp isolate with a novel MLST profile was identified, which carried blaCTX-M-15, blaOXA-1, and blaTEM-1. ST16 and ST14 are mostly dual-producers of carbapenem and ESBL genes and could be emerging high-risk clones in India.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.