Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations.
Helminth infections and nutrition can independently alter the composition and abundance of the gastrointestinal microbiota, however, their combined effect is poorly understood. Here, we used the T. retortaeformis-rabbit system to examine how the helminth infection and host restriction from coprophagy/ready-to-absorb nutrients affected the duodenal microbiota, and how these changes related to the acquired immune response at the site of infection. A factorial experiment was performed where the bacterial community, its functionality and the immune response were examined in four treatments (Infect, Infect+Collar, Control+Collar and Control). Helminths reduced the diversity and abundance of the microbiota while the combination of parasites and coprophagic restriction led to a more diversified and abundant microbiota than infected cases, without significantly affecting the intensity of infection. Animals restricted from coprophagy and free from parasites exhibited the richest and most abundant bacterial community. By forcing the individuals to absorb nutrients from less digested food, the coprophagic restriction appears to have facilitated the diversity and proliferation of bacteria in the duodenum. Changes in the microbiota were more clearly associated with changes in the immune response for the infected than the nutrient restricted animals. The functional and metabolic characteristics of the duodenal microbiota were not significantly different between treatments. Overall, infection and diet affect the gut microbiota but their interactions and outcome can be complex. These findings can have important implications for the development of control measures to helminth infections where poor nutrition/malnutrition can also be a concern.
Given their global distribution and abilities to persist in the host, helminths can play a crucial role in affecting risk of infections by increasing individual variation in infection. Helminth co-infections are of particular interest because by altering host immune responses, they can modify host susceptibility and thus intensity and transmission of other parasites/pathogens. The dynamics of co-infection were examined using two helminths of the European rabbit. Individuals were simultaneously challenged with a primary dose of both parasites, and changes in intensity were examined in relation to local and systemic immune responses. Both helminths persisted in co-infected rabbits; however, contrasting dynamics and immune responses were observed. Graphidium strigosum intensity was high throughout the co-infection, while Trichostrongylus retortaeformis intensity decreased but was not completely cleared. A Th2 response was observed against G. strigosum, while a mixed Th1/Th2 profile was found to T. retortaeformis. A comparison with our previous work on single infections showed that G. strigosum intensity was higher in co-infected than single infected hosts, while T. retortaeformis showed no significant changes. Differences were also observed in the cytokine profiles, blood cell concentrations and antibody trends. Overall, host variability during helminth co-infections can be generated by significant differences in immune responses and/or parasite dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.