Extraintestinal pathogenic Escherichia coli (ExPEC) are of significant health concern. The emergence of drug resistant E. coli with high virulence potential is alarming. Lack of sufficient data on transmission dynamics, virulence spectrum and antimicrobial resistance of certain pathogens such as the uropathogenic E. coli (UPEC) from countries with high infection burden, such as India, hinders the infection control and management efforts. In this study, we extensively genotyped and phenotyped a collection of 150 UPEC obtained from patients belonging to a semi-urban, industrialized setting near Pune, India. The isolates representing different clinical categories were analyzed in comparison with 50 commensal E. coli isolates from India as well as 50 ExPEC strains from Germany. Virulent strains were identified based on hemolysis, haemagglutination, cell surface hydrophobicity, serum bactericidal activity as well as with the help of O serotyping. We generated antimicrobial resistance profiles for all the clinical isolates and carried out phylogenetic analysis based on repetitive extragenic palindromic (rep)-PCR. E. coli from urinary tract infection cases expressed higher percentages of type I (45%) and P fimbriae (40%) when compared to fecal isolates (25% and 8% respectively). Hemolytic group comprised of 60% of UPEC and only 2% of E. coli from feces. Additionally, we found that serum resistance and cell surface hydrophobicity were not significantly (p = 0.16/p = 0.51) associated with UPEC from clinical cases. Moreover, clinical isolates exhibited highest resistance against amoxicillin (67.3%) and least against nitrofurantoin (57.3%). We also observed that 31.3% of UPEC were extended-spectrum beta-lactamase (ESBL) producers belonging to serotype O25, of which four were also positive for O25b subgroup that is linked to B2-O25b-ST131-CTX-M-15 virulent/multiresistant type. Furthermore, isolates from India and Germany (as well as global sources) were found to be genetically distinct with no evidence to espouse expansion of E. coli from India to the west or vice-versa.
The specificity of hybridization of complementary sequences in DNA is the basic strategy for identifying target genes. For this, stem loop oligonucleotide probes have been developed in order to enhance the specificity and selectivity to the target DNA. Among stem loop oligonucleotides, molecular beacons are the recent probes used for biomolecular recognition reactions. Molecular beacon-based assays are fast, simple, inexpensive, and enable real-time monitoring of nucleic acid reactions both, in vivo and in vitro. This review has been designed to provide a better understanding of the different aspects of molecular beacons, e.g. structure, designing and applications in real-time monitoring of nucleic acid amplification, detection of pathogens, nucleic acid-protein interaction, genetic analysis and array technology.
Traditionally, the distribution of the Mycobacterium tuberculosis genotypes in India has been characterized by widespread prevalence of ancestral lineages (TbD1+ strains and variants) in the south and the modern forms (TbD1− CAS and variants) predominating in the north of India. The pattern was, however, not clearly known in the south-central region such as Hyderabad and the rest of the state of Andhra Pradesh where the prevalence of both tuberculosis (TB) and human immunodeficiency virus (HIV) infection is one of the highest in the country; this area has been the hotspot of TB vaccine trials. Spoligotyping of 101 clinical isolates obtained from Hyderabad and rural Andhra Pradesh confirmed the occurrence of major genogroups such as the ancestral (or the TbD1+ type or the East African Indian (EAI) type), the Central Asian (CAS) or Delhi type and the Beijing lineage in Andhra Pradesh. Sixty five different spoligotype patterns were observed for the isolates included in this study; these were further analyzed based on specific genetic signatures/mutations. It was found that the major genogroups, CAS and “ancestral,” were almost equally prevalent in our collection but followed a north-south compartmentalization as was also reported previously. However, we observed a significant presence of MANU lineage in south Andhra Pradesh, which was earlier reported to be overwhelmingly present in Mumbai. This study portrays genotypic diversity of M. tuberculosis from the Indian state of Andhra Pradesh and provides a much needed snapshot of the strain diversity that will be helpful in devising effective TB control programs in this part of the world.
Mycobacterium tuberculosis is a major human pathogen that has evolved survival mechanisms to persist in an immune-competent host under a dormant condition. The regulation of M. tuberculosis metabolism during latent infection is not clearly known. The dormancy survival regulon (DosR regulon) is chiefly responsible for encoding dormancy related functions of M. tuberculosis . We describe functional characterization of an important gene of DosR regulon, Rv0079 , which appears to be involved in the regulation of translation through the interaction of its product with bacterial ribosomal subunits. The protein encoded by Rv0079 , possibly, has an inhibitory role with respect to protein synthesis, as revealed by our experiments. We performed computational modelling and docking simulation studies involving the protein encoded by Rv0079 followed by in vitro translation and growth curve analysis experiments, involving recombinant E. coli and Bacille Calmette Guérin (BCG) strains that overexpressed Rv0079 . Our observations concerning the interaction of the protein with the ribosomes are supportive of its role in regulation/inhibition of translation. We propose that the protein encoded by locus Rv0079 is a ‘dormancy associated translation inhibitor’ or DATIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.