BACKGROUND:The significance of circulating tumor cells (CTCs) in blood and of disseminated tumor cells (DTCs) in bone marrow (BM) in patients with early stage breast cancer is unclear. In this study, the authors investigated the occurrence of CTCs and DTCs in women with early stage breast cancer and evaluated the correlation of their presence with other prognostic markers. METHODS: Blood and BM aspirations were collected at the time of primary breast surgery. CTCs were detected by using the CellSearch assay, and DTCs were detected by immunostaining BM aspirates for pancytokeratin. The presence of CTCs and DTCs was correlated with tumor classification (T1 vs T2), tumor histologic grade, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, and lymph node (LN) status. RESULTS: Of 92 patients who were included in the study, 49 had T1 tumors, and 43 had T2 tumors. CTCs were detected in 31% of patients, and DTCs were detected in 27% of patients. There was no correlation between the occurrence of CTCs and DTCs with the tumor classification (T1 vs T2) or histologic grade. CTCs were detected in 33% of patients with ER-positive disease versus 26% of patients with ER-negative disease, in 32% of patients with PR-positive disease versus 30% of patients with PR-negative disease, and in 25% of patients with HER2-positive disease versus 31% of patients with HER2-negative disease. DTCs were observed in 23% of patients with ER-positive disease versus 37% of patients with ER-negative disease, in 22% of patients with PR-positive disease versus 32% of patients with PR-negative disease, and in 0% of patients with HER2-positive disease versus 29% of patients with HER2-negative disease. CTCs and DTCs were nearly equally prevalent in both LN-positive women and LN-negative women. There was no significant correlation between the occurrence of CTCs or DTCs with tumor classification (T1 vs T2), tumor histologic grade, positive ER status, positive PR status, or positive HER2 status, and axillary LN status. CONCLUSIONS: CTCs and DTCs in women with early stage breast cancer did not correlate with the standard prognostic indicators that were considered. The implications of their occurrence in patients with early stage disease will require further large-scale studies. Cancer 2010;116:3330-7.
Background Cancer stem cells (CSCs) are purported to be epithelial tumor cells expressing CD44+CD24lo that exhibit aldehyde dehydrogenase activity (Aldefluor+). We hypothesized that if CSCs are responsible for tumor dissemination, disseminated cells in the bone marrow (BM) would be positive for putative breast CSC markers. Therefore, we assessed the presence of Aldefluor+ epithelial (CD326+CD45dim) cells for the presence of the CD44+CD24lo phenotype in BM of patients with primary breast cancer (PBC). Methods BM aspirates were collected at the time of surgery from 66 patients with PBC. Thirty patients received neoadjuvant chemotherapy (NACT) prior to aspiration. BM was analyzed for Aldefluor+ epithelial cells with or without CD44+CD24lo expression by flow cytometry. BM aspirates from 3 healthy donors (HD) were subjected to identical processing and analyses and served as controls. Results Patients with triple-receptor-negative (TN) tumors had a significantly higher median percentage of CD44+CD24lo CSC within Aldefluor+ epithelial cell population than patients with other immunohistochemical subtypes (P=0.018). Patients with TN tumors or with pN2 or higher pathologic nodal status were more likely to have a proportion of CD44+CD24lo CSC within Aldefluor+ epithelial cell population above the highest level of HD. Furthermore, patients who received NACT were more likely to have percentages of Aldefluor+ epithelial cells greater than the highest level of HD (P=0.004). Conclusion The percentage of CD44+CD24lo CSC in the BM is higher in PBC patients with high risk tumor features. The selection or enrichment of Aldefluor+ epithelial cells by NACT may represent an opportunity to target these cells with novel therapies.
Purpose Cyclooxygenase-2 (COX2) plays a role in breast cancer progression at various stages starting from pre-malignant phenotype to clinical metastasis. Breast cancer metastasizes commonly to the bone and preclinical studies suggest an involvement of COX2 in this process. Detection of disseminated tumor cells in the bone marrow of patients at the time of surgery correlates with the subsequent development of clinical bone metastasis. Therefore, to investigate whether COX2 is important for breast cancer metastasis in humans, we analyzed COX2 protein expression by immunostaining of primary tumors from 112 operable stages I, II, or III patients and determined its correlation with bone marrow micrometastasis (BMM). Methods We detected COX2 protein in primary tumors by immunostaining with a monoclonal antibody, and tumor cells present in the bone marrow by immunostaining for epithelial cytokeratins and by morphological criteria. Results COX2 expression in primary breast cancer correlated with BMM in a highly statistically significant manner (P = 0.006). Our statistical analyses of correlations of the COX2 positivity in primary tumor with other clinically relevant indicators revealed that COX2 positivity correlates with high nuclear grade (P = 0.0004). Furthermore, we were able to detect COX2 protein in BMM by immunostaining. Conclusions These studies indicate that COX2 produced in primary breast cancer cells may be vital to the initial development of BMM that may subsequently lead to osteolytic bone metastases in patients with breast cancer, and that COX2 inhibitors may be useful in halting this process.
Human epidermal growth factor receptor 2 (HER2) gene amplification in circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) might be useful for modifying Herceptin therapy in breast cancer. In the process of investigating the utility of a microfluidic platform for detecting HER2 gene amplification in these cells, we observed novel results on discordance of HER2 status. Peripheral blood (8.5 mL) and bone marrow (BM) (7.5–10 mL) were collected prospectively from patients with clinical stages I–IV breast cancer. Mononuclear cells were recovered, stained with cytokeratin (CK), CD45, and DAPI, and processed through microfluidic channels for fluorescence in situ hybridization (FISH). A ratio of HER2:CEP17 >2 in any CK+/CD45 or CK−/CD45 cell was regarded as positive for HER2 gene amplification. Peripheral blood from 95 patients and BM from 78 patients were studied. We found CK+/CD45−/DAPI+ CTCs in 27.3% of patients. We evaluated HER2 gene amplification by FISH in 88 blood and 78 BM specimens and found HER2+ CTCs in 1 of 9 (11.1%) and HER2+ DTCs (27.2%) in 3 of 11 patients with HER2+ primary tumor. Among patients with a HER2− primary tumor, 5 of 79 had HER2+ CTCs (6.3%) and 14 of 67 had HER2+ DTCs (20.8%). The overall rate of discordance in HER2 status was 15% between primary tumor and CTCs and 28.2% between primary tumor and DTCs. HER2 was amplified in CTCs and DTCs in a portion of both HER2+ and HER2− primary tumors. HER2 discordance was more frequent for DTCs. The clinical implications of evaluating HER2 status in CTCs and DTCs in breast cancer needs to be established in prospective clinical trials. The cell enrichment and extraction microfluidic technology provides a sensitive platform for evaluation of HER2 gene amplification in CTCs and DTCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.